
BINARY NUMBER SYSTEM 4

An understanding of the binary number system is necessary before proceeding
with a further examination of LGP-21 programming concepts. Each digit of a
decimal number has a multiplier associated with it. Take, for example, the
number 237.

Multipliers: etc. c- 1000 loo IO

Digits: 2 3 ;

Starting with the least significant digit (first digit to the left of the decimal
point) the associated multiplier is 1 (or 10’); moving one place to the left, the
multiplier is 10 (or lo’), then 100 (or 102), 1000 (or 103), etc. The multi-
pliers, starting with the least significant digit and moving to the left, are con-
secutively higher powers of 10. The number 237, then means:

7 ones plus 7x l= 7
3 tens plus 3 x lo= 3 0
2 one hundreds 2 x 100 = 200

Total 237

The binary number system is similar to the decimal system, with two impor-
tant differences. First, the multipliers starting with the least significant
digit and moving to the left are consecutively higher powers of 2:
2 (or 21), 4 (or 22), 8 (or 23), etc.

1 (or 2’),
The second difference is that any digit

position may contain only a 0 or 1, whereas, in the decimal system, any digit
position may contain 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. An example of a binary
number, then, is

Multipliers: etc. c- 126 64 32 16 6 4 2

Digits: 1 1 1 0 1 1 0 i

This binary number, 11101101,is constructed just like the decimal number 237,
above.

By adding the respective multiplier values for each binary digit, starting with
the least significant digit, we find that

1x1 = 1
0x2 = 0
1x4 = 4
1x8 = 8
0x16 = 0
lx 32 = 32
lx 64 = 64
lx 128 = 128

237

Thus, the decimal number 237 is equivalent to 11101101 in binary. The decimal
system is based on 10 digits, and the binary system on 2. The standard notation
used to specify the base of a number is a subscript. Therefore, the equivalence
could be written:

237 10 = 111011012

To convert a binary number to its decimal equivalent, write the multipliersabove
each of the binary digits, then total all the multipliers that have the digit “lft be-
low them. For example, find the decimal equivalent of 110000110102:

4-1

1024 512 2 5 6 126 6 4 32 16 6 4 21 1 0 0 0 0 1 1 0 1 b

1024
512

16
8
2

156210 = 110000110102

One way to convert a decimal integer (whole number) to its binary equivalent is
to divide the number by 2. The remainder becomes the least significant binary
digit; the quotient (e.g. , 237 + 2 gives a quotient of 118 and a remainder of 1)
is again divided by 2 and the remainder becomes the next binary digit. This
process continues until the quotient is zero. The remainders become the binary
number, where the first remainder is the least significant binary digit and the
last remainder is the most significant (far left) binary digit.

Example: Convert 23710 to its binary equivalent.

Quotient

2)
21118
21
21
21
21
21
21

0

Remainder

1 least significant
0
1
1
0
1
1
1 most significant

Therefore, 23710 q 111011012.

In the decimal system the digits to the right of the decimal point (fractions)also
have multipliers. Take, for example, the number .6875:

Multipliers: I/IO l/l00 l/IWO 1/10,000--t etc.
Digits: 6 8 7 5

The most significant fractional digit (first digit to the right of the decimal point)
has a multiplier of l/10 (or 10-l); moving one place to the right, the multiplier
is l/100 (or lo-2), then l/1000 (or 10Y3), l/10,000 (or 10W4), etc. The multi-
pliers, starting with the most significant digit and moving to the right, are con-
secutively lower powers of 10. The number .6875, therefore, constitutes a
series of additions, as follows:

6x1/10 = .6
8 x l/100 = .08
7 x l/1000 = .007
5 x 1/10000 = .0005

.6875

Again, the binary system works similarly. The multipliers, starting with the
most significant fractional digit and moving to the right, are consecutively lower
powers of 2, namely l/2 (or 2-l), l/4 (or 2-2), l/8 (or 2-3), l/16 (or 2-4), etc.
Again, a digit position can only contain a 0 or a 1. An example of a binary frac-
tion is

Multipliers: l/2 l/4 l/6 Vl6UetC.

D i g i t s : . l 0 1 1

To convert a binary fraction to its decimal equivalent, the multiplier values
of the binary fraction are added again, just as in the decimal example:

4 2

1 x1/2 - .50
0x1/4 = . o o
1x1/8 = .125
1 x l/16 - .0625

.6875

Therefore, . 687510 = . loll2

One way to convert a decimal fraction to its binary equivalent is to multiply
successively by 2, ignoring any digit to the left of the decimal point in the mul-
tiplicand, when performing the successive multiplications.

Example: Convert .687510 to its binary equivalent.

.6875
2

1x37 50
X 2 (ignoring the ftlll to the left of the point in the

multiplicand)
0.7500

2
1x5000

X 2 (ignoring the “lY to the left of the point in the
multiplicand)

1.0000

Continue until there are all zeros to the right of the decimal point, as on the last
multiplication above, or until the number of multiplicands equals the number of
bits to the right of the binary point in the number. Going back to the first result,
write down the digits to the left of the point in each product; place a point in front
of these to get the binary equivalent of the decimal number.

Therefore, .687510 = ,,10112

In the decimal system this is called a decimal point; in the binary system, a binar:
point. The binary point is usually represented as a caret (A). Also in binary
terminology, the word “bit” is often used synonymously with “binary digit”-thus,
Ita 32 bit number” and ‘Ia 32 digit binary number” are the same thing.

ADDITION IN BINARY Addition is the same as in the decimal system, except, 1 + 1 = 0 with a 1
carried.

Examples: 1 10 11 111
+1 +1 +1 + 11

10 11 100 1010

. SUBTRACTION
IN BINARY

Subtraction is also the same as in decimal, except, 0 -1 = 1 with a 1 borrowed:
i.e. borrow 1 from the left and add 2 to the digit on the right, just as you would
add 10 if working in decimal.

Examples 1 0 10 1010 100
-1 -0 -1 .-11 -10 0 1 1 1 1 11

-

MULTIPLICATION AND . The rules are the same as in decimal.
DIVISION IN BINARY

Examples: 0x0=0 o+o=o
1x0=0 O+l=O
1x1=1 lSl=l

Once the binary configuration of a number has been established, it is not diffi-
cult to imagine what it looks like in a memory location. For example,

.375 10 = A0112

appears in the LGP-21 as

0 0110000000000000000000000000000

t

t position of binary point* t spacer is always 0

sign bit, always 0 for positive numbers.

NEGATIVE NUMBERS Bit position zero of a computer word will indicate whether the number is posi-
tive or negative. However, the sign of a positive number is not changed by
simply inserting a 1 in position zero. Instead, negative numbers are held in the
computer as a 2’s compIement.

Consider, for example, the number -. 375 which is represented in.binary as:

0123456789 12913o1 ” bit positions of computer word
1,lO 1 0 0 0 0 0 0 . . . 0 0 0

The quickest way to see why this is the computer’s way of representing -. 37510
is to add it as a binary number to the representation of + . 37510:

01234567139 129130131 [bit positions of computer word
+.37510 = 0,o 1 1 0 0 0 0 0 0. . . 0 0 0

-.37510 = 1,lOlO 0 0 0 0 o... 0 0 0

10,o 0 0 0 0 0 0 0 0.i. 0 0 0

If the 1 to the left of bit position zero is dropped, the result is 0, just as
.37510+(-.37510)= 0.

One way to obtain the representation of a negative number is the following:

1. Change its sign to + and write its binary representation.

2. Starting at the left, change all the l’s to O’s and all the O’s to l’s,
until the last 1 is reached. This 1 and all the following zeros re-
main unchanged.

The largest positive number the LGP-21 Accumulator can holds is

01111111111111111111111111111110

* The binary point for a number is never actually stored in memory. The loca-
tion of the imaginary binary point inside the computer is between bit positions
0 and 1. However, for convenience in expressing integer values, the binary
point is often assumed to be moved to other positions. This relative position
is referred to as “qtl and is discussed later in this chapter.

4-4

If the negative value of this number is used, it appears as

10000000000000000000000000000010

The number -1, which cannot be converted according to the above rule, appears
as

10000000000000000000000000000000

Notice that the first bit position of all positive numbers contains a zero, and
that of all negative numbers a 1. It is the sign bit of the Accumulator which
is examined by the circuits associated with the Conditional Transfer instruc-
tion.

INSTRUCTION WORDS The format of a word which is interpreted by the computer as an instruction is
as follows (Figure 4.1):

L Interpreted only in conjunction with T, I, P, and Z instructions.

FIGURE 4.1 Instruction Word Format

The only bits the computer considers when interpreting an instruction word are
0, 12 through 15, and 18 through 29. Other positions in the word do not affect
the meaning of the instruction.

Each of the command symbols or letters has a 4-bit code. This code is held in
positions 12 through 15 of the instruction word. The 4 positions 12 through 15
allow for 16 different 4-bit patterns. The 16 eommand symbols and their 4-bit
codes are listed in Figure 4.2 (Note: some of these have not yet been discussed.

Symbol Command Code

2 Halt; Sense and Transfer 0000
B Bring 0001
Y Store Address 0010
R Set Return Address 0011
I Input or Shift 0100
D Divide 0101
N N Multiply (save right) 0110
M M Multiply (save left) 0111
P Print or Punch 1000
E Extract 1001
U Unconditional Transfer 1010
T Conditional Transfer 1011
H Hold 1100
C Clear 1101
A Add 1110
S Subtract 1111

FIGURE 4.2 List of LGP-21 Commands

4-5

Examples of some instruction words:

DECIMAL BINARY
COMMAND TRACK SECTOR

0 I 2 3 4 5 6 7 6 9 1011 1 2 1 3 1 4 1 5 1 6 1 7 161920212223242526272629x(31

B 0 5 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0

S 6317 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0

In the discussion of the Y instruction, it was explained that this instruction
causes the address portion of the contents of the Accumulator to replace the add-
ress portion of the contents of location m. This means that the contents of bit
positions 18 through 29 of the Accumulator replaces the contents of bit positions
18 through 29 of memory location m.

Also discussed earlier was half of the rule for track-and-sector arithmetic when
adding two instruction words. The rule was that, when the sector comes to 64
or more, subtract 64 from it and add 1 to the track. Now, consider track modi-
fication. When a track address exceeds 64, a 1 is carried into bit position 17
(one of the bits which are ignored in an instruction). This allows “end-around”
programming; i. e. , one could consider the tracks as being in sequence,
numbered 00, 01, 02,. . .60, 61, 62, 63, 00, 01, etc. For example, if the add-
ress 1500 were to be added to the address 5329, the resulting address would be
0429 and a 1 bit would be carried into bit position 1’7. This carry is important
if an address is used to terminate a loop which results in an tvend-aroundfl
operation.

It was also noted earlier that adding Z is the same as adding zero. These rules
are based on binary arithmetic. Some examples of arithmetic operations using
two instruction words follow:

DECIMAL BINARY

B4218

+ZOO56

B4310

H3638

+ 23300

HO538

S4215

+ 23551

S1402

HO301

-HO500

-S6201

TR.

9 x

0 1

0 0

0 1

00

00

00

0 1

0 0

0 1

0 0

0 0

1 1

A(

1:

I

, I

I

’

/ I

/

I

/ I

, I

1

:K
-
!, 2:

0 1

0 0

0 1

1 0

0 0

10

0 1

0 1

1 1

0 1

1 0

1 1

SEC 2R

!3 24 25 26 2; !8 29 30 31

3 0 1 0 0 1 0 0 0

3 1 1 1 0

1 0 0 1 0

3 1 0 0 1

10000

1 1 0 0 1

3 0 0 1 1

111oa

3 0 0 0 0

1oooa

0 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0

1 0 0 0

1 1 0 0

1 1 0 0

1 0 0 0

0 1 0 0

4 6

DATA WORDS

Binary Data

Notice that the bits in the Command portion of the instruction word can be mani-
pulated, too. For example, if a Bring command is added to a Hold command, the
result would be a Clear command.

DECIMAL BINARY

B1408

+~I026

C2434

Therefore, care must be exercised when adding or subtracting instructions (e.g.,
to test for the end of a loop) so that the desired result will be obtained.

The format of a word interpreted as data by the computer is shown in Figure 4.3.
It consists of a sign (in bit position zero) and 30 bits of magnitude. The 31st, or
spacer bit, is always zero in memory. A computer word can represent data in
a number of different forms, including:

1. Binary

2. Binary-Coded Decimal (4-bit format)

3. Alphanumeric (6-bit format)

+I lI21314 15 16 171 8 ~9~10~11~12~13~14~15~16 17118 19120121122123 24125126127128129130~31

4 DA T A WI 0

FIGURE 4.3 Data Word Format

When the number 125. 2510 is handled in the computer as binary data, it appears
in this form: 1111101,012. Since there are 32 places in a computer word, the
question arises: Where in the 32 places is the 1111101,01 positioned. The
answer is that it can be anywhere in the word. The convention for denoting the
position of the number is to specify the value of q; q being the position of the
least significant integer bit, and the caret symbol indicating the position of the
binary point in the computer word. For example:

Decimal No. Computer Word

125.25@q= 12

125.25@q=lO

4-7

Binary-Coded

Decimal Data

The letter q is sometimes dropped and the decimal number written as 125.25 @ 12
or 125.25 @ 10. This convention also applies to instruction words. Therefore,
for the example above, we could write that the command is @ 15, the track address
@ 23, and the sector address @ 29.

Since the position of the binary point in a computer word is merely an assumption
for the programmer’s convenience, the computer does not know where it is, but
assumes it to be between bits 0 and 1, or at a q of 0 for all numbers, including
results of arithmetic operations. The programmer therefore considers a num-
ber (as interpreted by the computer) to be multiplied by 29, where q is the
assumed binary point.

Example:

Number as Interpreted Number as Interpreted
Computer Word by Computer by Programmer

()1()(-J -------0 .5 .5x29

If the pro
is .5 x 2+

rammer’s q is 2, the number is . 5 x 22 or 2; if his q is 3, the number
or 4. This is analogous to multiplying by lox in the decimal system by

moving the decimal point “x” places to the right.

When decimal data is to be entered into the computer, it can be read in and con-
verted to binary by one of the data input subroutines available from General Pre-
cision. The q of the binarized data is specified by the programmer. Care must
be taken to specify a q at which the data can actually be held. The q can be de-
termined only when the largest value is known which the subroutine is being asked
to read at a given time. This means that the programmer must specify a q at
least large enough that the largest data value can be binarized to that q. Further,
if the programmer wants to retain as much significance to the right of the binary
point as possible, he should not make the q any larger than necessary.

By consulting the Powers of 2 Table, (Appendix C), it is easy to determine the
largest number that can be held at any given q and the degimal places of accuracy
possible to the right of the binary point. For example, 2 = 512 means that at a
q of 9, the computer can hold binary numbers ranging from -512 to almost $512,
as shown below:

DECIMAL

-512 @ 9

511.9...9@9

BINARY

To determine the precision to the right of the binary point at a q of 9, one must
consider how many binary places there are between positions 10 and 30 inclusive

This would allow 21 binary places. The Powers
~~~~~l,“‘,~~l~t~~~~~~t!~OOOO0476..  . Therefore, the programmer can
safely expect, at a q of 9, to hold in binary the equivalent of decimal numbers
accurate to 6 decimal places to the right of the decimal point.

Each decimal digit has a 4-bit code as follows:

Decimal Digit Code Decimal Digit Code

0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

4-8



Binary-coded decimal data is held in groups of 4 bits, each group represent-
ing a decimal digit. Up to 8 such digits can be held in a 32-bit computer word.
Examples:

Decimal No. Binary-Coded Decimal Representation

125 @ 16

6039481@30

91260572 @ 31

0 I 2000
000

I
1 0 0

It should be observed that the same number in binary-coded decimal and in
simple binary presents two entirely different bit patterns:

125 in BCD @ 30 o - - - - - 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 ~ 0
125 in Binary @ 30 o - - - - - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 ~ 0

Decimal data enters the computer in binary-coded decimal; usually it is convert-
ed to binary and stored. However, there are some instances when this conversion
is not necessary. If it is an identification number (such as a stock or employee
number), has only numeric (no alphabetic) characters, and the problem requires
merely that the program be able to determine its relationship to other identifica-
tion numbers-equal, not equal, less than, or greater than-binarization may be
unnecessary. For even though the computer performs pure binary, not binary-
coded decimal arithmetic, it can subtract one binary-coded decimal number
from another and use the sign of the difference to indicate relative magnitudes.
This is possible because the two numbers, as interpreted by the computer, re-
tain the same relative magnitudes as they havewhen  they are interpreted by
people as binary-coded decimal numbers. For example, assume X and Y are
two binary-coded decimal numbers at the same q and that Y is greater than X.
When they are interpreted by the computer as binary numbers at a q of 0, Y
will still be larger than X. The result of subtracting Y from X will, of course,
be meaningless except for the sign. Note however, that this type of arithmetic
is not possible when either of the binary-coded decimal numbers has a binary
1 in bit position zero, as the computer would then consider it a negative number.

Data binarization is also unnecessary for a one digit number and for data which,
after being entered, becomes part of the output but is used in no other way.

Alphanumeric Data When data consists of a combination of alphabetic and numeric characters-
such as names, identification numbers which also contain alphabetic charac-
ters, or typewriter control codes-it is called alphanumeric. This kind of data
must be stored in 6-bit form. That is, 6 instead of 4 bits must be stored for
each character, since four bits can only represent 16 different characters
which is obviously insufficient for all the numeric and alphabetic characters
available.

Appendix C contains a list of all available characters and their 6-bit codes. The
first four bits are called the numeric bits and the last two, the zone bits. Notice
that, in some cases, two characters have the same four numeric bits and can be
distinguished only by their zone bits. The programmer must specify for every

4-9



HEXADECIMAL
NOTATION

character which enters the computer whether he wants it recorded in memory
in 4-bit or 6-bit mode. When entering strictly numeric data, the 4-bit mode
should be used, as no two digits have the same numeric bits. However, for alpha-
numeric data input the 6-bit mode should be used, so that distinction between
characters with identifical four numeric bits is possible; e.g., between F and U.
A 32-bit word can hold five alphanumeric characters. Example: “LGP21”  in
6-bit format at a q of 29 appears as follows:

00011010111010000100101000011000
,

L G P 2 1

There are other forms of internal data representation (such as floating-point),
but their discussion is not necessary in this manual.

Since it is awkward to write thirty-two O’s and l’s, a shorthand or hexadecimal
notation for writing computer words has been devised. To find the hexadecimal
representation of a computer word, divide its 32 bits into eight groups of four
bits each. There are 16 possible combinations for any group of four bits. There-
fore, each combination of four bits can be represented by one of a group of 16
characters, zero through W, used for this purpose, as well as the decimal
equivalent of the 4-bit numbers. This is shown in Figure 4.4.

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal

0
1
2
3
4
5
6
7
8
9
F
G
J
a”

W

Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

FIGURE 4.4 Hexadecimal Equivalences

Some examples follow:Some examples follow:

Decimal Number:Decimal Number: 23.7523.75 @ 14@ 14 2 32 3 .75.75
hh

0 I 20 I 2 3 4 53 4 5 66 77 66 99 IOIO IIII 1212 I3I3 1414 I5 I6I5 I6 I7I7 I6I6 ISIS 2 02 0 2121 2 22 2 2 1 2 42 1 2 4 2525 2 62 6 2i2i 2 62 6 2 92 9 3030 3131

Computer WordComputer Word 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 ~ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 1 1 1 ~ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hexadecimal WordHexadecimal Word 00 00 22 WW 88 00 00 00--

610



Decimal Instruction: B 2917

Computer Word:

COMMAND= I T R A C K = 2 9 SECTOR q I7

0 I 2 3 4 5 6 7 E 9 IO II i2I6 I7 ,16 IS 2 0 2 1 222~2425262?2629\3031
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 ~ 0 0

Hexadecimal Word 0 0 0 1 1 K 4 4

Alphanumeric Data: LGP21 @ 29
L G P 2 I

‘ 0 I 2 3 I 4 5.6 7 16 9 IO IIComputer Word: il2 13 I4 I5116 I7 I6 IS120 21 2 2 2$‘24 2 5 2 6 27128 29‘ 3 0 II
0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 ~ 0 0

Hexadecimal  Word I F IQ IB 14 (F II 18

Since the last character involves the spacer bit, it will normally be one of the
eight even characters, which have zero as their fourth bit: 0, 2, 4, 6, 8, F,
J, Q.

Decimal to Hexadecimal A method for determining the appearance of numbers in the LGP-21 as sequences
Conversion of thirty-two O’s and l’s was given earlier in this manual. Now a simpler method

shall be explained which provides the eight hexadecimal characters which can be
used to represent a given number at a given q.

Suppose 94.87654, at a q of 7, is to be expressed in hexadecimal. Two steps are
required to find the first character:

1. Subtract the q of the given number from 3

3-q=x therefore 3 - 7 = 4

2. Evaluate 2x and multiply this value by the given number:

2X(number) therefore 2-4(94.  87654) =
(. 0625)(94.87654)  =
2.92978375

The first hexadecimal character is 5- -

Each of the remaining characters requires a single process:

3. Multiply the fractional part of the previous product by 16 (always 16,
regardless of q). The integer part of the new product is the next
hexadecimal character.

Thus, in the example given:

.92978375
16

14x87654OOO-*

.87654
X 16

14.02464-

.02464
16

0 x39424- -

.30784
16

2x92544

.92544
X 16

14.80704-

.80704
X 16

12.91264-

.39424
16

6x3O784- -

4-11



Since the hexadecimal characters equivalent to 14 and 12 are Q and J, respec-
tively, the hexadecimal representation is

94.8765410  @ 7 = 5QQ064QJ

The fractional portion after the last multiplication, .91264,  is greater than .5,
so it may appear that the correct hexadecimal representation for 94.87654 at a
q of 7 is closer to 5QQ064QK  than to 5QQ064QJ. However, it may be recalled
that the last character involves the spacer bit, and so must be even: 0, 2, 4, 6,
8, F, J, or Q. Therefore, 5QQ064QJ  is the best possible approximation in the
LGP-21.

This example illustrated a positive number. For negative numbers, one pre-
liminary step is needed: subtract the negative number from the power of 2 which
is 1 greater than the given q. For example, suppose the first two hexadecimal
characters are to be found for the number -3.1415927 at a q of 3. First, the
number$ust  be subtracted from the power of 2 which is 1 greater than 3
(i.e., 2 ):

24 = 16.0000000

number = -3.1415927

12.8584073

Then, proceed as with positive numbers: multiply by 23-3 = 2’ = 1. No multi-
plication is necessary for this step.

12.8584073-

Thus, the first character is J (decimal value 12).

.8584073
16

1: 7345168-.

The next character is K (decimal value 13),  and so on.

Hexadecimal Instruction

Words

Instruction words as well as data words may be represented in hexadecimal.
The Command portion of an instruction occupies bits 12 through 15 and can be
represented by a hexadecimal character. A complete list of the LGP-21
commands and their hexadecimal designations is given in Figure 4.5.

4-12



rCOMMAND BINARY HEXADECIMAL DECIMAL

2 0000 0 0
B 0001 1 1
Y 0010 2 2
R 0011 3 3
I 0100 4 4
D 0101 5 5
N 0110 6 6
M 0111 7 7
P 1000 8 8
E 1001 9 9
U 1010 F 10
T 1011 G 11
H 1100 J 12
C 1101 13
A 1110 a” 14
S 1111 W 15

FIGURE 4.5 Hexadecimal Designation of Commands

Thus, the hexadecimal word 8W517F36 would appear in memory as

+,I,2,3,4,5,6,7,9,9,10,11,12,13,14,15,16,17,16,19 ,2q21,22,23,24,25,26,27,26,29,3~31

1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0
----v--u

8 W 5 1 7 F 3 6

Since bits 12 through 15 are 0001 (00012 = Ilo), which is the binary equivalent
of the Bring command, this word would be interpreted as a B instruction if it
were to reach the Instruction Register.

The six bits, 18 through 23, contain the track portion of the operand address.
In the above example, the bits are 111010. Their decimal equivalent is

etc. c-32
1 i” 1” O4 1’ Ol = 1 x 32 = 32

1 x 16 = 16
l x 8= 8
o x 4= 0
l x 2= 2
o x l= 0

58

Therefore the track number is 58-*

The next six bits, 24 through 29, contain the sector number. These bits are
001101, so the sector number is 13, according to the same conversion process:

etc. -32
0 67 i 0’ i = 0x32= 0

0x16= 0
l x  8=8
l x  4=4
o x  2= 0
l x  l=1

i3

4-13



In summary, the hexadecimal word 8W517F36  is treated as a B5813 instruction,
if it is in the instruction register.

B track 58 sector 13
100011110101’0001’01’111010”001101’10
--‘“w.-,‘--

8 W 5 1 7 F 3 6

4-14


