CONSTRUCTION OF AN LGP-2 7 PROGRAM

NN NN NN NN NN NN NN NN NN NN NN NN NN AN NN NN NN NN AN NN NN NN NN AN NN NN NN NN NN NN NN N

LGP-21 CODING SHEET

A computer program consists of a series of step-by-step instructions from the
programmer to the computer. To illustrate the basic concept, the following
steps would have to be specified to solve the problem below:

U
(7+8)g _g -
[3 9 -6 = x.

—

As explained in Chapter 2, "A" is the alphabetic symbol for addition, "M" for
multiplication, "D for division, and ''S" for subtraction. According to the de-
finition, each instruction must consist of a command portion which identifies
the operation to be performed and an address. Therefore, assuming that the
numbers 7, 8, 3, 9, and 6 are stored in memory in locations 0300, 0301, 0302,
0303, and 0304 respectively, the program would look like this:

Step Order Address Notes

1 B 0300 Bring the number 7 to the Accumulator.
2 A 0301 Add 8 7+8 =15

. 7+8
3 D 0302 Divide by 3 —3— =5

. 7+8

4 M 0303 Multiply by 9 (3) 9=45
5 S 0304 Subtract 6 ((7 ;8 }9) -6 o
6 H 0305 Hold the answer in 0305
7 Z 0000 stop

It is important to clearly understand the distinction between the _address of a
memory location and the contents of that location. An address, such as 0300,
refers to a place on the disc, while contents refers to the word recorded at
that place.

Programs are usually written on LGP-21 Coding Sheets. The sample below
(Figure 3.1) shows the general format and explains in detail the purpose of the
seven columns provided.

3-2

LGP-21 CODING SHEET

PREPARED FOR. PAGE OF
JOB NO. PROGRAM NO. PROGRAM PREPAREL 8Y. PROGRAM CHECKED BY DATE
PROBLEM TRACK
PROGRAM INPUT CODES é LOCATION OPER”’C::SYRUUION E o?°f§§'é!§s NOTES
1
L 1 i] 1 N
f]
L 1 1 I i 1
! [
I L 1 1 1 I 1 1 1 e 1 4 1 L !
T T
I 1 Il = 1 1 1 1 i + ?
Input codes are For the programmer's
interpreted and convenience
acted upon by the
program input »
routine For the programmer’s convenience.
May be used to identify the value
stored at the address used in each
The conditional stop instruction.
code must follow
each program input
code
Stop Code must follow each

instruction whether that
location is to be left blank
or filled.

Memory location into

which the instruction

in the adjacent column
is to be stored.

The two parts of this column contain the operation
(command) and the address. Each may contain up
to 4 characters. The operation section holds an
alphabetic character representing an order or the
high-order portion of a hexadecimal word. The

address section holds the operand address for the
given operation or the low-order portion of a hexa-
decimal word.

FIGURE 3.1 LGP-21 Coding Sheet

The last column, "Notes', should be used to provide all the necessary explana-
tory information which will be helpful for subsequent reading of a program. The
programmer will find it very useful to develop the habit of providing such infor-

mation.

Anything written in parenthesis on the coding sheet should be read as 'the con-
tents of'; an arrow as ''replace'; and the abbreviation "Acc. " will be used for

“Accumulator.

" For example, (m) is to be read 'the contents of memory loca-

tion m, " and (m)-—s=(Acc.) is to be read '"the contents of memory location m
replaces the contents of the Accumulator. ' This notation will be used through-
out the manual.

If the example problem were written on a coding sheet, with the instructions to
be stored in locations 1000 through 1006, it would appear as follows:

PROGRAM] INSTRUCTION &1 CONTENTS
INPUT CODES 55| LOCATION rapenaTiON] ADDRESS g OF ADDRESS NOTES
¥
1 1 1 i 1 i i ’
T
,
i 1 1 : i i ' i i1 4 { 1 1 1
P S S S 1,0,0,0 Ll |B=0131010 ’ 7 (0300) = (Acc) =7
PR S RS S 1,0,0,1 L 1 A0,3,0,1 ! 8 7 + (0301) == (Acc)= 15
A T
PR T S A S | 1,002 , , 1D%o|3|o|2 ! 3 15 + (0302)—(Acc.)= 5
L 1,003 , , Mo0,3,03|" 9 5 x (0303)—-(Acc)=45
L 1,004 ,, /50,304’ 6 45 - (0304)—(Acc)=39
R S N S 1,0,0,5] - .H.0,3fQIL5’ (Acc) —{0305)
e 1,0,0,6], , ,2,0,0,0,0° STOP
T N A

THE 4-PHASE
INSTRUCTION
CYCLE

SECTOR REFERENCE
TIMING TRACK

At the start of an operation, the computer memory must contain the data to be
processed, and the instructions which tell the computer what operations to per-
form on these data. Ignoring, for the moment, how this information is initially
entered into the computer, it need merely be remembered here that any memory
location may be used to store one instruction word or one data word. To start
execution of the instructions, the programmer specifies the storage location of
the first instruction to be executed. After it is found and operated on, the com-
puter automatically takes all successive instructions from sequential memory
locations (e.g. , if execution starts at Location 1400, the next instruction will
be taken from 1401, then 1402, etc.). The time required for completing a
specified operation depends, in part, on the location in memory of the instruc-
tion and of its operand, if one is necessary. The process by which the com-
puter obtains and executes an instruction is called an instruction cycle. An in-
struction cycle begins with a memory search for the instruction word and ends
with the commencement of the search for the next instruction word.

The complete cycle consists of four phases:
Phase 1 - Search for the instruction.

Phase 2 - Transfer the instruction from main memory to the Instruction
Register and increment the Counter Register by 1.

Phase 3 - Search for the operand.

Phase 4 - Execute the instruction.

In order for the computer to find a specific location in memory, a Sector Re-
ference Timing Track is used. This track contains the sector numbers 00
through 127 permanently pre-recorded at the time of manufacture. As ex-
plained in Chapter 1, there are actually 32 concentric circles on the disc
which are divided into 128 sectors each. However, for programming purposes,
sector addresses are numbered 00 through 63. Therefore, on the Sector Re-
ference Timing Track numbers greater than 63 are interpreted modulo 64. For
example, sector 97 on the Sector Reference Timing Track represents sector 33
for odd-numbered tracks (i.e. 97 ~ 64 = 33).

Sector Reference
Timing Track
read head

Track 14 read/write
head

FIGURE 3.2 Sector Reference Timing Track

3-3

3-4

The Sector Reference Timing Track (Figure 3.2) has only a read-head and can-
not be modified by the programmer. The numbers on this track pass under its
read-head one sector before the corresponding sector in main memory does.
Thus, when a specified sector address is read on the Sector Reference Timing
Track, the read/write head on the appropriate track is activated, and the word
can be read from or recorded in memory. For example, assume the contents

of Location 1432 is to be brought to the Accumulator. Because Track 14 is even-
numbered, the Sector Reference Timing Track searches for sector 32. When it
is read, read-head 7, which serves Tracks 14 and 15, is activated; and as sec-
tor 32 moves under that read-head, its contents is copied into the Accumulator.

This sequence of actions may be more easily understood if two instructions are
considered in terms of the instruction cycle. For example:

PROGRAM 5 INSTRUCTION & CONTENTS
INPUT CODES | El LOCATION 5roaTION] ADDRESS 55| OF ADDRESS NOTES
! '
i 1 1 4 1 1 1
T
r
i i i ; 1 1 1 i i i i 1 i (] i 1
e L4451, .8,4.4.5.8(" 8 8 (Acc.)
PR T N R W N |1'1'16 L |A=4|4|512 ‘ 7 8 +7 (Acc)

During Phase 1 the Counter Register contains the address 1115. Since 11 is
an odd-numbered track, the computer searches the Sector Reference Timing
Track for sector 79 (79 - 64 = 15). When it is read, the read-head 5, serving
Tracks 10 and 11, is activated, and Phase 1 ends (Figure 3.3).

Sector Reference
Timing Track
read head

| Track 11 read/write
head

FIGURE 3.3 Instruction Cycle Phase 1

In Phase 2 the contents of Location 1115 is copied into the Instruction Register,

and the Counter Register is incremented by 1, so that it now contains 1116
(Figure 3.4).

Sector Reference
Timing Track
read head

e [

— Track 11 read/write
head

FIGURE 3.4 Instruction Cycle Phase 2

During Phase 3 the computer searches the Sector Reference Timing Track for

the operand sector specified in the Instruction Register- that is, sector 58
(Figure 3.5).

sector Reference
Timing Track
read head

| Track 44 read/write
head

FIGURE 3.5 Instruction Cycle Phase 3

3-5

TRANSFER
INSTRUCTIONS

3-6

When sector 58 is read, Phase 3 ends, and the computer goes to Phase 4
(Figure 3.6) to execute the instruction B4458. Therefore, the contents
of Location 4458 (the number 8) is copied into the Accumulator.

Sector Reference

Timing Track

c ll- 116 read head

;

i B 4458 .
Track 44 read/write
head

A 8

FIGURE 3.6 Instruction Cycle Phase 4

Then the cycle begins again:

Phase Activity

1 Counter Register contains 1116, therefore search for sector 80
on the Sector Reference Timing Track. When sector 80 is found,
activate read-head 5 for Track 11.

2 Copy contents of Location 1116 (A4452) into the Instruction Re-
gister. Increment the Counter Register by 1 to 1117.

3 Search for sector 52. When it is read, activate read-head 22
for Track 44.

4 Execute the instruction; that is, add the contents of 4452 (the
number 7) to the contents of the Accumulator (8) and leave the
result (15) in the Accumulator.

The minimum time required for a complete 4-phase cycle is 18 word-times.
A "word-time" is the time required for one word to pass under the read/
write head. Since the disc revolves at approximately 1180 rpm, a word-time
takes approximately .40 millisecond for the LGP-21. The maximum time for
the 4-phase cycle is 146 word-times (one disc revolution plus 18 word-times).
Program execution time can be minimized by selecting operand addresses
according to a special method which is called “optimizing. '™ This process is
explained in Chapter 8. However, optimization is not considered in most of
the examples given in this manual.

When the computer has to take the next instruction from some location other
than the next one in sequence-that is, execute a branch-two types of in-
structions may be used: an unconditional or a conditional transfer instruction.

The Unconditional Transfer instruction, Urn, tells the computer to branch un-
conditionally to location m to obtain the next instruction, instead of going to the
next location in sequence. After this transfer, the sequential mode is resumed,
starting at location m, until another transfer instruction is encountered. If the
U instruction is regarded in terms of the 4-phase cycle, it can be explained

as follows:

Instruction Explanation

u m—= (Counter)

Instructions are executed in Phase 4. If m replaces the contents of the Count-
er in Phase 4, the computer will go to m during Phase 1 of the next 4-phase
cycle to obtain the next instruction. The contents of the Counter is replaced
by the address portion of the U instruction which is in the Instruction Register

during Phase 4. (Note: It is not the contents of m which replaces the contents
of the Counter.)

The Conditional Transfer instruction, Tm, tells the computer to branch to
location m to obtain the next instruction only if the Accumulator contains a
negative word; otherwise, to go to the next location in sequence for the next
instruction. If the transfer takes place, the sequential mode is resumed,
starting at m, until another transfer instruction is encountered. If the T
instruction is thought of in terms of the 4-phase cycle, the instruction can be
explained as follows:

Instruction Explanation

T If the Accumulator contains a negative word,
m —(Counter); if the Accumulator contains
a positive word (Counter) remains unchanged.
In either case (Acc.) remains unchanged.

Phase 3 for U and T instructions is a dummy phase, as a memory search
for an operand is unnecessary in conjunction with these two instructions.

Consider a problem using these transfer instructions. The problem requires

one of two calculations to be made-the choice depending upon the sign of a

certain number. B, C, D, and E are given, and the problem is stated as
follows:

. - B
If B is positive, calculate ':T:ID = answer

If B is negative, calculate B’—gﬁ D

= answer
Data Storage

Location Data
0300 B
0301 C
0302 D
0304 E
0400 Answer

The coding for this problem follows:

3-7

INSTRUCTION
MODIFICATION
AND LOOPING

3-8

INPUT CODES g LOCATION [S DoeEs é OF ADDRESS NOTES
: =/ ADDRESS 1o
R :
1 1 1 # i 1 1 1 1 1 1.1 % 1 1 1
N 1,0,4,0{ |, |, |B}O,3|O,0 ! B —(Acc.)
Ly 1,0,4,1} | ,T; 1,0,4,6}" Test B for |positive or negative
I S S 1,004 2 [.D:0,3,0,| ’ (Acc.) + Ci(Acc)
Ly e 1,0,4,3] | | J_M=0,3,O.2 ! (Acc) x D-»t{Acc))
PR S S 1,0,4,4 , | ,H,r0|4l010 4 (Acc.) — Q400
N 1,0,4,5| , , ,z,00,0,0]" HALT
L 1,04 6] | .A;0.310.4 ’ (Acc.) + E-#(Acc)
T R 1,0, 7] | ,U} 1,0,4,2 ! Branch back to complete calculations
’
11 1 : 1 1 1 1 1 1 1 i 1 { 1 1 i

The T1046 instruction in Location 104ldirects the computer to 1042 for the
next instruction if B is a positive number. If B is a negative number, the
computer branches to Location 1046 to obtain the next instruction. Starting

at 1047 it is necessary to execute the same instructions which are in Locations
1042 through 1045; to avoid repeating these instructions, a U1042 instruction
in Location 1047 is used to transfer back to them.

As already explained, the instruction to be executed is transferred to the In-
struction Register during Phase 2 and executed during Phase 4. It should be
noted that the computer can only interpret a word as an instruction word when
it is in the Instruction Register. An instruction word in any other place is in-
terpreted as a data word. This makes it possible to manipulate instruction
words as if they were data words. For example, using the appropriate se-
quence of instructions, one can bring an instruction word into the Accumulator,
modify it in some way (possibly by adding some constant to it), and hold the
modified instruction back in its original location. The computer is unaware
that it is actually processing an instruction word. The modified instruction
word will not be interpreted as an instruction until it is transferred to the In-
struction Register during Phase 2 of some subsequent 4-phase cycle; and this
will not occur until the address of this instruction is in the Counter Register
during Phase 1 of the subsequent 4-phase cycle. This LGP-21 feature—
internally stored program operation which permits modification of instructions—
can be a very useful programming aid.

Consider this problem:

128 numbers are stored in Locations 0300 through 0463 (Tracks 03 and 04).
Compute their sum and store the result in Location 0500.

This problem could be solved by bringing the first of above numbers into the
Accumulator with a Bring instruction, then adding the other 127 numbers by
using 127 Add instructions, and finally storing the result as specified. This
would be a tedious way to code the problem, though it would be a possible
approach. However, the program can be reduced to a few instructions by using
the instruction modification feature. The coding would be as follows:

w

INPUT CODES E LOCATION OPER::I"IS:DLTCH(;:RESS é’ OF ADDRESS NOTES
1 1 1 ;] 1 1 ’ 1 1 1 1] i 1 1 1

.. ,. .. | 0ooo08], 0500 0— (Acc)
L0 0,009, , ,€,0500!|’ Sum O—(Acc.)
N 0010/ , . B0500][" Bring skm to Acc.
L : L 00V, 1], 1A;O,3.O.O ! Add the next number
S 001,21 , |, ,H=015.0.O ! Hold 1h‘ sum in 0500.

|

The first instruction will be stored in Location 0008. This is possible since
the computer will start execution of the program at any location specified by
the programmer.

The first CO500 instruction places whatever is in the Accumulator into 0500
and creates a zero in the Accumulator. The second CO500 instruction (which
could just as well be H0500) sets the sum in 0500 to zero. The next 3 instruc-
tions bring the sum (zero at this time), add to it the first number (which is in
0300), then hold this answer back in 0500 as the new sum. The next sequence
of instructions must effect (1) the address modification of the A0300 instruc-
tion in Location 0011, (2) a branch back to Location 0010 to repeat the se-
quence, and (3) a means of terminating the repetition. This process is called
“looping”. Thus, the instruction in Location 0011 can be changed to A0301 for
the next time it is executed; then changed to A0302, etc. There must be con-
trol over the number of times that the instruction is modified and the loop re-
peated; then an exit from the loop can be made after the 128 numbers have
been summed.

Continuing with the coding, the instructions in Locations 0013 through 0015
accomplish the modification of the A0300 instruction in Location 0011:

PROGRAM o] INSTRUCTION 3| conrtenTts
INPUT CODES i | LOCATION IR ATION] ADDRESS | 55| OF ADDRESS NOTES
! [
Il 1 1 Il 1 1 1
T
r
11 L : 1 11 L. 1 y I } 1 1 1
Ly 0,0,0,8| , | lC}O.SJOIO ! Zero—(Acc
T 0,0,0,9} , , ,c,05 00}’ Store zero i 0500 [the sum]
T T
PR 0,0,1,0] , | ,85015,0,0 ’ Bring the sum to the Acc.
N 90,1y 1|, (A 0,3,0,0 ! Add the nexg number
Ly 0,01, 2| |, , 1H{O,S,O,O ’ Hold the sump in 0500
P R S S 0,0,1,3] , ,B{ 0,0, I|" Bring the insjruction to be modified to
L1] : 1 11 1 1 1 | | # l 1 1 ! the Acc.
e 0,0, 1, L lAgo,oll 917 Add Z 000l|to the instruction
R 0,001,5[, , H00,1,} ! Hold moditied instruction OOIt
S S S L1 SN S T Y T ' :
A1 1 1 : 1 1 1 1 1 1 1 1 1 + 1 L L ’
Ly o,0,1,9 ,, ,2) 0,00 1]’ Constant usefl in address modification
1 I. 1 % 1 1 1 1 i 1 1 i 3 ; 1 1) !

The BOOL11 instruction in Location 0013 brings into the Accumulator, from
Location 0011, the instruction to be modified. Now arithmetic operations can
be performed on this instruction word as if it were a data word. In the Ac-
cumulator is the instruction word A0300, to which another word must be
added, so that the instruction word A0301 will be obtained as the result. The
A0019 instruction in Location 0014 accomplishes this by adding the contentsof
Location 0019 to the contents of the Accumulator and leaving the sum in the
Accumulator. This addition takes place:

3-9

A 0300 - Initial contents of Accumulator
+ Z 0001 - Plus contents of Location 0019

A 0301 - Final contents of Accumulator

(A "Z" in the command portion of an instruction is treated as a zero by the
computer.)

Thus, when the computer is ready to execute the instruction in Location 0015,
the Accumulator contains the instruction word A0301. The HOO011 instruction
in 0015 places the contents of the Accumulator in Location 0011. Therefore,
the A0300 instruction in Location 0011 has been replaced by the instruction
A0301.

When the sum of the 128 numbers has been accumulated in Location 0500, the
program must exit from the loop. The instructions in Locations 0016 and 0017

enable the program to determine whether the loop is to be repeated or termi- »
nated:

INPOT CODES g LOCATION owen_A':g:IuiTc;g;ss g OFADBRESS NOTES
i1t : L1 1 ’ 1 i i I - | : L 1
N 0,0,0,8] , , ‘0:0.5.010 ’ Zero the A
P WS 0,00,9] | | lC%O,SIOIO ’ Store zero i 0500 (the sum)
by 0,0,1,0] , , l8#0,51010 ’ Bring the su to the Acc.
Lok NN i.A,[t'JiSif),tL’w’ Add the nex number
N lr L 0,0,1,2} , | 1H;o,s,o,o ‘ Hold the surg in 0500
R S 0,0,1,3] , .B=0,0.I.I ‘ Bring the insjruction to be moditied to
Ly L L gy ’ the Acc.
by 0,0,1,4} ,, ,A0,0,1,9 ’ Add Z 00Ot to the instruction
S S S R 0,0,1,51 | ,H%0.0. 1,1 ! Hold modifieq instruction in 0003
I T S S S 0,041 ,6 L 1 48 5010.2.0 ’ Subtract A 4500 from the instruction
e 0,0,1,7| , |\ ,7,0,0,1,0/"] Return to befinning of ioop if (Acc)
L1 g L L R R ! negative
Lo g 0,0,1,8f,,,2000,0]|" HALT
L a 0,0t 9} 125010 HAE Constont use in oddress modification
Ly 0,0,2, 0 , , lA=O 5,0,0]|"’ Constant use to test for end of loop
At 1 = 1 11 1.1 1 A 1 # | I
A 1 1 % 1 1 1 i 1 1 1 A Il } i i A
i T S} } 1 i i i i i 1 1 1 { il 1

Before the SO020 instruction in 0016 is executed, the Accumulator contains the
A instruction which has just been held in 0011 by the instruction in 0015. What
is the address portion of the A instruction now in the Accumulator? It depends
on how many times the loop, extending from 0010 through 0017, has been exe-
cuted. If it has been executed once, the A instruction reads A 0301; if twice,
A 0302 and so on. If the loop has been executed 128 times, the instruction
reads A0500. The following example shows that the subtraction will yield a
negative result whenever the A instruction has an address portion less than
0500:

A XXXX
-A 0500

Result: Some negative number for any XXXX <0500

* It is good practice to enclose an address with brackets to indicate that it
will be modified during the execution of the program. The brackets have
no other significance, but make it easier for a programmer to follow the
program.

3-10

The A instruction is in the Accumulator and in Location 0011 before the
SO020 instruction is executed. Whenever this A instruction has an address
portion less than 0500, the result of the SO020 instruction in 0016 will be a
negative word in the Accumulator. The TOO0 instruction in 0017 will then
branch to the beginning of the loop at Location 0010. At the start of the

128th execution of the loop, the A instruction in 0010 will be A0463. There-
fore, the instructions from 0010 through 0012 will add in the last number and
hold the sum in 0500. The instructions from 0013 through 0015 will modify
the instruction in 0011 to read A0500 and leave this instruction in the Accumu-
lator. The 50020 instruction in 0016 will subtract A0O500 from this instruction
word. For the first time the result will be positive (zero). Therefore,

rather than branching back to the beginning of the loop, the TOO10 instruction
will allow the computer to exit to the instruction in location 0018, a halt. At
this time 0500 will contain the sum of the 128 numbers stored in 0300 through
0463.

A question on elementary arithmetic might have occurred to the reader. If
the above program is to work correctly, the following answer must result
from the modification of the instruction in 0011:

A 0363 - Initial contents of Accumulator
+Z 0001 - Plus contents of Location 0013

A 0400 - Final contents of Accumulator

If the addition were done according to the rules of decimal arithmetic, the
answer would be A 0364. However, there is no address 0364, and the com-
puter gives A 0400 as the answer. This is due to the following rule: when
the sector portion exceeds 63, as in 0364, subtract 64 from the sector andadd
01 to the track to arrive at the ''right' answer.

THE Y INSTRUCTION The Y instruction stores the address portion of the contents of the Accumula-
tor in location m, replacing the address portion of the word in location m.
The remaining bit positions of location m are unchanged.

Instruction Explanation
Y Address portion of (Acc.)-address portion

of (m); (Acc.) and all but the address portion
of (m) remain unchanged.

This allows storage of the address portion of the word in the Accumulator in
memory without changing the command portion of the word already there. The
most common use of the Y instruction is in address modification. Consider
the following problem: Add the contents of 0300 to the contents of 0400 and
store the sum in 0500; add the contents of 0301 to the contents of 0401 and store
the sum in 0501; and so forth, until all the values in Track 03 have been added
to the values in the corresponding sectors in Track 04 and stored in the cor-
responding sectors in Track 05. The coding for this follows:

3-11

PROGRAM] INSTRUCTION 2] conTeEnTs
INPUT CODES 5 | LOCATION [opeRATION] ADDRESS 2! OF ADDRESS NOTES
' ’
i L I L 1 i
T
’
i 1 1 } 1 A i 1 1 1 N 1 { 1 1 1
PR S ST R S l;1,0,0}] ,, ,B %[O 13,0 ,0] ’ Add contents of corresponding sectors
NS L 1,0, 1, IA'L0141010] ’ in Tracks 93 and 04 and hold sum in
L i, 1,02, , Hlos 00l correspondihg sector in Track O05.
T
P S 1, 1,03 , , /B, 1,1,00]" Bring instruction from 0000 into Acc.

I 1,1,04] | iAJ| | ~lI 2l Add Z 000l |to the instruction in Acc.

Ll ot a4 4 1,1,0,5 L Y, b, 001" Store modifljed address into instruction
T l

. A , ’ in 0000
A L L = 1 i L 1 1 i i 1 1. { 1 L 1 1 T wmw~

R 1,061 , (Al , b 3]’ Add Z 0100 [to the instruction in Acc.
L 1,1,0,7 Ly Y 1,041 ! Store_ modifietd address into instruction in

+
1 1 1l : L 1 i 1 i 1 1 1 1 ! L 1 L 4 OOOI'
R 1,0,08] , , AL, 1307 Add Z 0100 o the instruction in Acc.
P 1, ,0,9] 4 IY; 1,1,0,21" Store modifidd address into_instruction in

11 : i L1 1 1 1 F I] ; J - i ! 0002
T 1,0, 1,0, WS, h1y4] Subtract B Q600 from instruction in Acc.

J L}

Ly [,T: l,1,00]" Return to begjnning of loop if (Acc.) negative.
P b2 12'10101 o,1]’ HALT — also psed as constant in address
PR S R T L1 T S S - ’ modificatian,

AT L3z 10' 1,0,01° Constant used in address modification.
T R 1,1,1,4 L, |BIOlGIOIOl|,§|(| Constant usagtotestforendofloop.
. \ !

The instructions in 1100 through 1102 perform the addition described in the
"Notes'" column. The B1100 instruction in Location 1103 places the contents
of Location 1100, B0300, in the Accumulator. Then, the A1112 instruction
in Location 1104 adds the contents of Location 1112, 20001, to the contents of
the Accumulator, B0300, resulting in B0301, as follows:

B 0300 - Initial contents of Accumulator
+Z 0001 -~ Plus contents of 1112

B 0301 - Final contents of Accumulator

The YHOO instruction in Location 1105 now replaces the address portion of
the instruction word in Location 1100, B0300, by the address portion of the
instruction word in the Accumulator, B0301. The result is to change the in-
struction in 1100 from B0300 to B0301. The YIIOO instruction does not alter
the word in the Accumulator. Therefore, B0O301 remains in the Accumulator.

The A1113 instruction in Location 1106 adds the contents of 1113 to the con-
tents of the Accumulator, as follows:

B 0301 - Initial contents of Accumulator
+Z 0100 - Plus contents of 1113

B 0401 - Final contents of Accumulator

The Y1101 instruction in Location 1107 now replaces the address portion of the
word in 1101, A0400, by the address portion of the word in the Accumulator,
B0401. The result of this is to change the instruction in 1101 from A0400 to
A0401. Notice the command portion, A, of the word in Location 1101 did not
change even though it is different from the command portion, B, of the word
in the Accumulator.

The A1113 instruction in Location 1108 adds the contents of 1113 to the con-
tents of the Accumulator, as follows:

B 0401 - Initial contents of Accumulator
+Z 0100 - Plus contents of 1113

B 0501 - Final contents of Accumulator

The Y1102 instruction in Location 1109 then changes the instruction in 1102
from HO500 to HO501.

The S1114 instruction in 1110 subtracts the contents of 1114 from the contents
of the Accumulator. This results in a negative word, as shown below, since
B0O600 is mathematically larger than BO0501.

B 0501 - Initial Contents of Accumulator
- B 0600 - Subtract the contents of 1114

Negative Word - Final contents ef Accumulator
The T1100 instruction in Location 1111 will, therefoxre, transfer to the be-

ginning of the loop to add the next pair of numbers fxrom ‘Trracks 03 and 04
and store the result in Track 05.

At the beginning of the final pass through the loop, the is&tructions in 1100
through 1102 read as follows:

Location Instruction
1100 B 0363
1101 A 0463
1102 H 0563

The final sum, therefore, is stored in 0563, The instruetions in 1103 through
1109 then modify the above instructions to read as follows:

Location Instruction
1100 B 0400
1101 A 0500
1102 H 0600

The S1114 instruction in Loecation 1110, for the fipst time, results im a posi-
tive word (zero) as follows:

B 0363 - Initial contents of Acc. as a result of the B 1100 instruction in
Location 1103.

+ z 0001 -
B 0400 - Contents of Acc. as a result of the A ill2 instruction in Loca-
tion 1104.
+ z 0100
B 0500 - Contents of Acc. as a result of the A 1113 instruction in Loca-
tion 1106.
+ z 0100
B 0600 - Contents of Acc. as a result of the A 1118 instruction in Loca-
tion 1108.
— B 0600
ZERO - Contents of Acc. as a result of the S 1114 instruction in Loca-
tion 1110.

The TIHOO instruction in Location 1111, therefore, rather than branching back
to 1100 and through the loop again, allows the computer to continue to Loca-
tion 1112, where it halts.

3-13

INITIALIZATION

3-14

Notice the ZOOO01 instruction in 1112 is used both as a halt, when the loop ter-
minates, and as a constant by the A1112 instruction in Location 1104. Thisis
convenient if the program must be in a limited memory area in the computer.
Generally, however, this dual function is not used.

Taking another simple program, compute the product of consecutive pairs of
numbers on Track 03 and store these 32 products in Locations 0400 through
0431 as follows: (0300) x (0301) —(0400); (0302) x (0303) —>(0401); etc. ,
through (0362) x (0363) — (0431).

IN’;TJ?%%DMES g LOCATION OPERAI:gr:]UiEgI;SS é OCFOPJS?ETSSS NOTES
: LA
11 I e 1 bl 1) i1 & 1 } i 1 1
L 0,0,0,0] , | ,B;[013‘O,O] ’ Compute the product of a pair of
PR 0,0,0,1 L1 ,M1[0,3, 0, I] ’ numbers from Track O3 and store
N 0,0,0,2] , , ,H;[Ol41010] ’ on Track 04.
R 0,00, 3| , , ,8,0,0,0,0 ! Bring instrudtion from 0000 into Acc.
e 0,004 ,,,40,01,4 ’ Add Z 0002
L 0,0,0,5| ,, ,Y,0,0,0,0}" Store modifieqd address into instr. in 0000
Ly 0,00,6| , | ,A;O,OLILS ! Add Z 000I
R T S 0,0,0,7 L1 ,Y=O 0,0, (" Store modifigd address info instr._in 000!
Ly 0,0,0,8]| , | 18,0,0,0,2 ! Bring instructipn from 0002 into Acc.
TR R 0,0,0,9 L1 IA!O.OJIIS ! Add_Z 000!
T R T 0,01, 0] , , lY=O ,0,0,2]° Store modifigd address into instr in 0002
MR 0,0,1,1 L 4 48,001 6["* Subtract H 0432
L4 0,0,1,2] , | lT:O,O,O,O ! Test for end jof loop
NN o, 0,1 3| ,u: 1,4,0,0(1°’ Transfer to putput progrom
L o0, 1 4! |, 2 :O 0,0,2([" Constant usgd in address modification
Cad 4 oo, 8 |, Z ;O 0,017 Constant usedl in address modification
g 0,0, 6| , | ,H#O,4,3‘2 ’ Constant used to test for end of loop.
’
1 1 1 = 1 1 1 1 1 1 1 1 1 Tl i 1 1
’
A 1 1 } 1 il L.l L 1 1 1 : 1 1 1

Assume the program has been executed and the products in 0400 through 0431
have been printed out, or otherwise disposed of, so they are no longer needed.
With the program still in memory, a new set of data could be stored in Track
03, and the program restarted at Location 0000. Would it make the same cal-
culations on the data and store the answers in Locations 0400 through 0431 ?
In other words, after replacing the old data with new, could the program be
restarted and do exactly the same thing the second time? The answer is no,
because the instructions in 0000 through 0002 were modified during execution
of the program so that, when the program halts, these instructions read:

Location Instruction
0000 B0400
0001 MO401
0002 HO432

SUBROUTINE CONCEPT

The program is set to process data on Track 04, not Track 03, and to store
the products starting at 0432 instead of 0400. These modified instructions
must be reset or "initialized" before the program is executed a second time.
One method for initializing these instructions is to enter a new program in
memory with the same instructions as in the original program. The more
efficient and preferred method is to write the program to be “self-initializing”
as follows:

PROGRAM 5 INSTRUCTION 51 CONTENTS
INPUT CODES 5| LOCATION [GpeRATION] ADDRESS | 5| OF ADDRESS NOTES
! ’
i A 1 1 1 1 i
T
4
1 1 % i [1 Il F I : 1 1 1 -
. 0,000 , ;| 18%[0131010] ’ Compute tfe product of a pair of
Ll 0,0,0, 1| , , Mmlo3 0 1]} numbers| from Track 03 and
T T
L 0,0,0,2, , , Hlo 4 00l store on| Track 04.
T ¥
Lo 0,003, , /B 0,000]|" Bring instrugtion from 0000 into Acc.
L 0,004 | IA}OIOII,4 ! Add Z 0092.
L 0,0,0,5| , , ,Y,0,0,0,0{"’ Store_medifjed address into instr. in 0000.
T 1
e 0,006 , , ,A0,0,1,5]" Add Z 00QI.
T 1
L1441 0,007 , , ;Y 0,0,0,1 ! Store modif{ed address into instr. in OOOI.
T T
Lo 0,0,0,8 . 1 1B,0,0,0,2 ! Bring instr. from 0002 into Acc.
T T
L 0,0,09] ,, A0,0,1,5]" Add Z 000L.
T T
C oo, 1.0 Y% 0,0,0,2]|" Store modified address into instr in 0002.
Ll 4 co, 1,y ,, /S 001 6" Subtract HP432.
L Ly a 0,0,¢+,2y , , T 00 0,0["’ Test for eng of loop.
L oo v 3, , Ul 400" Transfer to putput program.
T T
L 01 4, , /2, 0,0,02]" Constant uskd in address modification.
T T
Ll Ly 00,1, ,,.,2,00,0, 1" Constant uspd in address modification.
T L
Ll L4 0,01 ,6|. , , HO0,43 2|’ Constant usgd to test for end of loop.
B T
L o,0,t, 7| , ,80,0,2,4|" Bring Z 0300 into Accumulator.
T]
oLy 0,0,1,8| ,, ,Y,00,0,0|" Initialize instr._in O00Q to read B 0300
Loy 0,0,1,9/ , , /A0,0,1 5|’ Add Z 000) resulting in Z 030L.
T T
L4 s 0,20, , Y000, I Initialize insjr in 000! to read M 0301
T L
L 0,0,2,0| ,, ,8,00,2,5|" Bring Z 0490 nto Acc
T T
T 0,0,2,2|, , ,¥Y,0,00,2]|" Initialize instr_in 0002 to read H 0400
T T
04 a 0,0,2,3| , , ,yoo000|" Branch 1o beginning of loop
N
[R A R 0,0,2,4)) IZiol3\IO|IO ‘ Constant us d I initializing
T 0,0,2,5 , ,2,0,4,0,0’ Constant u ed in mnitiahzing
' F !

The instructions in Locations 0017 through 0025 are initializing instructions
which make the program self-initializing when additional data are to be pro-
cessed by it. After the program is in memory, it can be executed as many
times as desired by starting execution at Location 0017, not 0000. All pro-
grams should be self-initializing. The execution of the program then starts
at the beginning of the initializing instructions.

The solution to a problem often requires that the same operation be performed
more than once. This can be graphically shown in the form of a “Flow Chart"
(Figure 3.7):

Operation Operation Operation Operation Operation D
A ha B B C el B ™™ which yields @
final result

FIGURE 3.7 Typical Flow Chart

3-15

Note that the example above constitutes an extreme simplification of a program-
ing flow-chart. In actuality, each operation would be plotted out in every detail,
so that Operation A alone might represent a series of steps which could cover
an entire page or more.

Assuming now that Operation B is long and involved and the program coded as
flow-charted above, it would further be necessary to show the same long se-
quence of instructions for Operation B twice. Obviously, it would be prefer-
able if the instructions for this operation could be written just once and used
again wherever required in the program.

If this is done, the program could transfer (with a U instruction) at the end of
Operation A or C to the beginning of the sequence of instructions which per-
forms Operation B. The question now arises, how does one exit from (or
branch out of) Operation B to the appropriate place in the program- the begin-
ning of either Operation C or Operation D? The exit instruction from Operation
B is a U instruction with a variable address portion and will be set prior to trans-
fer to Operation B. At the end of Operation A and before the transfer to Opera-
tion B, the address portion of the U instruction must be set to exit from Opera-
tion B to Operation C; at the end of Operation C and before entering Operation
B, the address portion of the U instruction must be set to exit from Operation

B to Operation D.

This introduces the R instruction:

Instruction Explanation

R (Counter) + 1 -address portion of (m); that part of (m)
other than the address portion is unchanged.

In other words, the contents of the Counter Register plus 1 replace the address
portion of memory location m. At the time an instruction is executed, the
Counter contains the location of the next instruction to be executed. Adding 1
to the contents of the Counter when the R instruction is executed gives the loca-
tion of the R instruction plus 2. Therefore, the R instruction causes its own
location plus 2 to replace the address portion of (m). The rest of the word in
location m is unchanged.

The skeleton coding for the flow-charted problem could look like this:

PROGRAM o) INSTRUCTION Sl contenTs
INPUT CODES 5 | LOCATION [t RATION] ADDRESS | 5| OF ADDRESS NOTES
T r
1 i 1 1 1 1 i
T
I
R Tt } Il 11 11) I S | St 1
T T
1) I = i L) 0101010 11 IA:NYI 1 1 4
T R W R S ' [N LAY . ! Operation A
11 1 = 1 1 1 ololllo L IA}NYI 1 1 ’
Ly 0,0\, 4l 4y 0,040 ! Set exit from Operation B to return to QO0I3.
b 0,01,2} , (,Y,0,0,3,2 ’ Enter Operatibn B
J . - = 1 FE OIOI‘4L3 1) 1A1[\.‘Yl 1 1 !
14 4—1 11 [S 13 {' if 1 1 ’ Opemﬁon c
[| % U T 0101210 11 lA'NYl 1 i !
L b 0,0,2,t L1 lRT,O,O,ILO ! Set exit from Operation B to return to 0023
P 0,0,2,24 , , ,9,0,03,2 ! Enter Operation B
1 1 1 e 1 1 1 OIOI2|3 - | IA%NYI 1 1 !
PR T T S PR IS LAY S ! Operation D
JE— i : 1 1 1 Olol3lo 11 IA'NYI 1 1 !
P N 0,0,3,1 L 1240101010 ! End - Halt
L 0,0,3,2} , , |A [J\IY, N Entrance Point
i I 1 4 1 1 | 11 1 11 i %' i i 1 ’
| N 0,039 ,, ,ANY, , , |’ p Operation B
™
L 0,040/, , ul 1] Exit Pont

3-16

Operation A extends from Locations 0000 through 0010. The R0040 instruction
in 0011 sets the address portion of the U instruction in 0040 to 0013 (location

of R0O040 instruction plus 2). The UOO032 instruction in 0012 branches to Opera-
tion B. A branch to Operation C will occur at the end of Operation B because
the U instruction in 0040 now reads UOO013.

Operation C extends from Locations 0013 through 0020. The R0040 instruction
in 0021 sets the address portion of the U instruction in 0040 to 0023 (location

of R0O040 instruction plus 2). The UOO032 instruction in 0022 transfers to Opera-
tion B again. This time, at the end of Operation B there will be a transfer to
Operation D, because the U instruction in 0040 now reads UOO023.

Operation D extends from Locations 0023 through 0030, and a Halt is at 0031.

Operation B, in Locations 0032 through 0040, is termed a “subroutine, " and
the instructions in Locations 0000 through 0031 constitute a "source program. '
The source program may ''call" (use) the subroutine any number of times. In
the example, the subroutine is only called twice. The entry point to the sample
subroutine is Location 0032 and the exit point is 0040. Actually, the entry point
does not have to be the first instruction in the written subroutine as in the ex-
ample, nor does the exit point have to be the last instruction. Subroutines are
programs which are used many times. Thus, like all programs, they may
start and end anywhere in the written program.

The R-U sequence which is used to call the subroutine is termed a “calling
sequence. " In the example, the calling sequence consists merely of these two
instructions. Some subroutines may require more elaborate calling sequences.

For example, some subroutines may require, before being entered, that certain
information to placed in the Accumulator. Also, it is possible to "nest' sub-
routines to any desired depth; i.e., one subroutine could call another subroutine,
which in turn could call still another, and so on. When standard subroutines
from the Commercial Computer Division library are acquired, they are ac-
companied by a program description which details the function of the program,
how to load it, what the exact calling sequence must be, and any other infor-
mation necessary for its operation.

3-17

