o e v V——

e)

B e

e e e e

‘77 HIGH-POWERED SYSTEMS REVIEWED

APRIL. 1994

3 |
.) Pournelle’s Product Awards
) Object-Oriented Databases
: Come of Age
A Nifty Multiprotocol Print
Server for Ethernet LANs

7 THE MAGAZINE OF TECHNOLOGY INTEGRATION

First PowerPCs

Apple’s Power Macintosh and
IBM’s Power Personal Systems

‘ i
IBM’s PowerPC

product plans,
plus Power Mac
vs. Pentium
benchmark results

CPU Wars:

Should you move
from CISC to RISC?

PLUS

04

29920

.. =
i, oo

» =
i]
he
!

Intel pushes the 80x86 envelope

A McGraw-Hill Pul blication/0360-5280

SPECI AL

GNDER THE HOOD

The Power Mac’s Run-Time Architecture

RANDY THELEN

f you put a 680x0-based Mac Quadra 800
next to a new PowerPC-based Power Mac-
intosh 8100/80, you might think they were
identical except for the nameplates. Glanc-
ing at the screens wouldn’t help, since the menus,
jcons, and windows are exactly the same. The
lications also look the same; in fact, you could
install the same ones on both machines. But if
you used both computers for a few minutes, one
difference would jump out at you: The Power
Macintosh is distinctly faster.

This is just what Apple’s software engineers
planned. Power Macintoshes maintain 100 per-
cent compatibility with existing Macintosh soft-
ware. This was accomplished through Power-
PC implementations of the Macintosh API, a
68L.C040 emulator, a new Mixed Mode Manag-
er, and modifications to the Process Manager.
(A Manager is a set of related functions that work
with a given series of data structures. The Process Manager
has routines that manage processes. A process is a run-
ning application.)

However, backward compatibility wasn’t the only goal
of the Power Macintosh’s operating-system design. While
support for existing applications is crucial, the system soft-
ware was also engineered to support future developments,
where powerful new applications will take full advantage
of the PowerPC’s speed.

In this discussion, T'll take a look at how Apple achieved
these two contradictory goals. I will concentrate on the
new portions of the design where appropriate, since much
of the compatibility issues are covered elsewhere in this
issue (see “Emulation: RISC’s Secret Weapon” on page
119).

Application Structures

’ll start by examining the structure of an existing 680x0
application. (From this point on, I’ll use the term 68K 1o
denote any of the 680x0 processors.) Macintosh files are
composed of two structures called forks. Each file has a data
fork and a resource fork.

Physically, there’s no difference between these two
types of forks. They're just streams of bytes located some-
where on disk. However, the Mac OS treats them differ-
ently. A file’s data fork contains data—typically the output
from an application, such as text from a word processor or

The RISC

REPORT:

Decision

numbers from a spread-
sheet. A file’s resource
fork contains information
on the file’s creator (this
is how the Mac OS knows
what application to launch
when you doublelick on
a document), the icon that
is displayed on the Desk-
top, and other information.

For 68K applications,
the resource fork also con-
tains program code. When
you double-click on a file
icon, the Finder summons
the Process Manager to start—or launch, in Macintosh
parlance—the application. The Process Manager then uses
a part of the Mac OS called the Segment Loader to read the
code resources from this fork into memory.

The 68K Macintosh application code resources are di-
vided up into code segments that the Segment Loader loads
into and out of memory. Code segments are typically 32 KB
in size, because Mac applications use PC-relative (pro-
gram counter) instructions. Such instructions are used so
that code is address independent and capable of being
placed anywhere within scarce physical memory. These
segments might be used briefly, purged from memory to

speed while
providing new
capabilities

APRIL 1994 BYTE 431

An integration of
PowerPC code and
680x0 code yields
compatibility and

JOHN PATRICK © 1994

SPECI AL

make room for other code seg-
ments, and then reloaded as nec-
essary into another portion of
memory.

Because the 128-KB Macin-
tosh used a 68000 processor, the
offset values of these instructions
were limited to 15 bits in size.
The sixteenth bit was a sign bit
to indicate the direction of the off-
set (either forward or backward
in memory). This limits refer-
ences to within +32 KB of the in-
struction. Subsequent 68K pro-
cessors had larger offset values,
but PC-relative instructions and
segments are still being used to
implement address-independent
code.

The Segment Loader loads
code segments on demand as
functions within them are called.
Essentially, any function call out-

_sxde of the current code segment application. The program code
is made through a nonpurgeable fragments) is located in the data fork of the file, while resources for

The RISC

Decision

| okt
[S = 1]

- n

“X x

0 =

oo s

Windows (WIND)
- siZE l

The structure of a 68K Mac application and a PowerPC Mac
for the PowerPC Mac (i.e., the code

code block called the jump table. windows, icons, and controls still reside in the resource fork.

If the code block with the called
function isp’t in memory, its entry in the
jump table is actually a call to the Seg-
ment Loader. The Segment Loader loads
the missing code block into memory and
then modifies the corresponding jump-
table entry, along with all the jump-table
entries associated with that code block.

Instead of acting as calls to the Segment
Loader, these jump-table entries have jump
instructions to the functions themselves.
‘When the code block is purged from mem-
ory (an operation that only the program
has control over), the jump-table entries
are reset so that they are again calls to the
Segment Loader.

The Power Macintoshes use a signifi-
cantly different design (see the figure “Mac
Application Structure”). Applications are
a single code fragment (except for im-
ported library functions, which reside in
other code fragments). Code fragments are
the atomic units for libraries and applica-
tions in a Power Mac application, and they
can be any size.

An entire PowerPC application’s code is
stored as one continuous unit in a file’s
data fork. Code fragments can export in-
ternal entry points (e.g., a Mac OS function
library) and can import entry points of oth-
er code fragments (e.g., an application that
requires a Mac OS function). The system
software is responsible for dynamically
linking the entry points of code fragments
at run time. As you might expect, the part

of the operating system called the CFM
(Code Fragment Manager) deals with load-
ing and managing code fragments.

The process of launching a PowerPC
Mac application is similar to that fora 68K
Mac application. The Finder hands the job
to a slightly modified Process Manager,
which calls the CEM to load in a code frag-
ment. From there, the CFM handles the
details of dynamic entry-point resolution,
which I will cover later.

But on a Power Mac, the Process Man-
ager faces a dilemma when you double-
click on a file. How does it know whether
to use the Segment Loader or the CFM?
The answer is a special cfrg resource that
has flags that inform the Process Manager
whether the application is a PowerPC ap-
plication or a “fat binary” (i.e., & combi-
nation of PowerPC and 68K code that can
run on any Mac). The Process Manager
uses this resource to determine whether to
use the CEM or the Segment Loader to
launch the application. If the Process Man-
ager fails to find this resource, it assumes
the application has only 68K code and uses
the Segment Loader.

Code Fragments Revealed

While Power Mac applications are single
code fragments, they often depend on func-
tions in other code fragments, such as
libraries or system software. In fact, por-
tions of the Power Mac ROMs are pack-

Windows (WIND)
| SIZE

REPORT.

aged as code fragments. One of
the CFM’s jobs is to resolve all -
dependencies of a given code
fragment after it loads the frag-
ment into memory.

Code fragments exist in two
executable formats, XCOFFs and
PEFs. XCOFF is IBM’s Extend-
ed Common Object File Format,
while PEF is Apple’s Preferred
Excecutable Format. Here I will
focus on the PEF file structure. A
PEF is a container of code, data,
and loader information. The PEF
container is the code fragment it-
self, and the loader information
spells out imported functions and
data, exported functions and data,
and version information.

To see how this all fits togeth-
er, consider the example of when
the CEM launches a Power Mac-
intosh application. It first loads
and locks the given code frag-
ment into memory. The CFM
then searches through the import
portion of the PEF container to
obtain a list of all the libraries that the ap-
plication depends on. Iterating through the
list of dependencies, the CFM builds a list
of all entry points into each code fragment
that the application needs. The CFM loads
each fragment required by the application.
This process is recursive.

Once a fragment that has no other de-
pendencies is loaded, its globals and stat-
ics are built within the application heap.
Then the recursive function of loading
fragments is unraveled via a two-step pro-
cess. First, each dependent fragment re-
ceives the addresses of the entry points
into the fragments that they use. Then the
dependent fragment’s globals are created.

A concrete example of this is where ap-
plication code fragment A depends on
code fragment M, which in turn depends
on fragment X. The Process Manager first
allocates a heap space for application A.
Next, code fragment A is loaded by the
CEM. (Note that the code fragment might
not be loaded into the application heap
space, as is the case with 68K applica-
tions.) Then fragment M is loaded, fol-
lowed by fragment X.

The CFM, knowing that X doesn’trely
on other libraries, creates X’s globals with-
in A’s heap space. Then the CFM pre-
initializes M’s jump table with the ad-
dresses of all entry points within X that
M is dependent on (i.e., addresses of func-
tions, procedures, gobal data structures,

132 BYTE APRIL 1994

and other global variables). Then, M’s
global variables are created. Finally, A is
preinitialized with the entry points and ad-
dresses of M. Then A’s own global vari-
ables are built by the CFM. Finally, A’s
main() function is called, which begins
program execution.

Statics and Globals

A critical part of the Power Macintosh’s
application setup is the creation and ini-
tialization of a fragment’s global variables
and data. The CFM gives the code frag-
ments access to global variables, static
data, and a jump table through a data struc-
ture called the Table of Contents, or TOC.
The TOC contains a list of pointers to the
various data elements and entry points
within the global data space and to other
shared libraries to which the code frag-
ment needs access.

After the CFM loads and resolves all
of a fragment's dependencies, it prepares
and initializes the fragment’s globals and
statics. First it allocates memory for the
globals’ data space—which also contains
the TOC—within the application’s heap
space. Shared libraries that are required
by an application fragment build their data
structures within the application’s heap
space as well. Then the CFM initializes
the pointers within the TOC.

The TOC has three kinds of pointers.
They can reference the code fragment’s

_own globals and statics, the globals and

statics of another code frag-
ment, or entry points with-
in other code fragments
(which is essentially a jump
table). See the figure “The
Structure of Dynamic Links
for Code and Data.”
References to globals re-
quire two assembly lan-
guage references to mem-
ory. The first retrieves the
address of the giobal, while
the second actually gets and
sets the global’s value. The Ia fication
question that’s often asked global

. o bi Reference to
is, “Why two references’ Ian imported

There are two benefits that global

an imported
function

code fragments get from IReferenoe to

using double indirection.
First, TOC entries are ref-
erenced using a fixed 16-
bit offset from a base regis- «

ter. This means that code A PowerPC application uses a TOC to point to various structures required by the
can have only 32_KB of application. The TOC points to the application’s own global and static variables,
global data (64 KB if nega- other fragments’ globals, and transition vectors that point to the TOC and function-

Reference to

The RISC

Decision

In the double indirection model, code can
have 32 KB (or 64 KB) of pointers to data,
yielding up to 8192 (or 16,384) individ-
ual items, each of which can be any size. A
second benefit is that one fragment might
wish to access a variable used in another
fragment. Double indirection allows this
type of memory sharing, since both frag-
ments can have pointers to the same shared
location.

Consider in detail how the mechanism
for calling another code fragment works.
The PowerPC physically has 32 general-
purpose registers. One of those registers,
which is a pointer to the globals, is known
as GPR2 (General Purpose Register 2).
It’s commonly called the TOC register be-
cause it points to the TOC for the current-
ly executing code fragment.

If code fragment A calls a function in
code fragment M, what’s going to set the
TOC register to point to M’s globals? The
Power Macintosh run-time architecture
assigns this responsibility to the caller. In
other words, whenever a code fragment
executes, it can rely on the TOC to be a
valid pointer to its globals (except, per-
haps, for some native interrupt handlers).

Therefore, the application needs to have
not only the address of an entry point into
a code fragment, but also the address of
that code fragment’s globals. This infor-

mation is stored within the globals’ space

in a structure called a transition vector.
This structure contains two elements: the

tive offsets could be used). entry poinis of shared libraries that the application uses.

134 BYTE APRIL 1994

REPORT

@
pointer for the target code fragment’s ’I‘OC}
and the entry point of the function being %
called.

‘The process of calling another code frag- "/
ment is called “making a cross-TOC call.”
The code to perform this must do four: %
things. First, the caller saves the current” <}

TOC GPR within the linkage area of the

B

stack. Second, it sets the TOC GPR 10 |

point to the called fragment’s globals. Then

the caller makes the function call. Finally,

when execution returns to the original code

fragment, the TOC gets reset to point back - ’

to the caller’s globals, which completes -
the cross-TOC call. '
This dynamic linking strategy works to

sy e

minimize the copies of various libraries -

in RAM during concurrent execution of *

applications that rely on the same libraries.

Each application that relies on a library
invokes an “instance” of the library. Each ~
instance has its own global variables, un-
less the library implements a shared glob-
al-memory strategy.

One major benefit of this design 1s that

access to global information is signifi-
cantly easier than was possible with the
68K run-time architecture. Previously, ex-
tensions, plug-in modules, and various pe-

Tl ~

.

riodic tasks had to resort to assembly lan- '

guage code to access globals within the
operating system or in an application. Now

global data access is a characteristic of the

Power Macintosh run-time architecture it-

self; no special programming is required to
use information inside an-
other code fragment.

Compatibility Components
As mentioned earlier, the
Power Macintoshes support
existing 68K applications
using the Macintosh AP], a
68L.C040 emulator, and a
new Mixed Mode Manager.
Macintosh applications rely
on the services of system
software through published
entry points, which are col-
lectively called the Macin-
tosh APL

This API is made up of
numerous Managers, in-
cluding QuickDraw (which
handles screen drawing),
the Window Manager
(which uses QuickDraw to
draw windows), and the
Font Manager (which han-
dles the display of text in
a variety of typefaces and

e

SPECIAL

¢ leserved
Reserved
Reserved

The PowerPC stack during a mode switch. A 68K application calls

The RISC

Decision

ever, it does not emulate
either the FPU or the
MMU (memory man-
agement unit).

The applications that
query the system software
for the processor type dis-
cover that a 68020 is op-
erating. The 68020 is used
because this processor
marked the greatest ex-
pansion of the feature set
of the 68K processor line.
The 68020 introduced
many new user instruc-
tions, several addressing
modes, and support for a
coprocessor. Subsequent
processors have become
faster, not more compli-
cated.

The Mixed Mode Manager
At any given moment, a
Mac application might be
running emulated 68K
code or executing native
PowerPC code when it
makes a call to the Mac-
intosh API. This is fur-

a PowerPC function, which invokes the Mixed Mode Manager, which ther complicated by the

in turn uses information in a routine descriptor to build a switch

fact that, in the inter-

frame. The switch frame contains information about the function to be est of getting the Power
called, the state of various registers, and the parameters passed to the Macintoshes on the mar-
function. Register A7 is the 68K stack, and AG is the 68K link register. | o¢ rapidly with a min-

The 601’s Link Register (LR) points 1o code that cleans up the stack

and restarts the emulator.

styles). The Macintosh API also provides
high-level, hardware-independent access
to low-level functions, such as sound gen-
eration (via the Sound Manager), expan-
sion boards (via the Slot Manager), and
serial /O (via the Communications Tool-
box).

Because applications use only these
well-defined published entry points, Apple
software engineers could replace the code
behind the API without requiring huge
changes to existing applications. Further-
more, replacing the API code with Power-
PC code improves the performance of
these applications dramatically because
they rely so heavily on API calls.

The 68LC040 emulator deals with those
portions of the application code that do
not make calls to the Macintosh APL It
maintains the stack frames, user and su-
pervisor mode, interrupt handling, and oth-
er processor characteristics on which pro-
grammers depend. The emulator supports
all 681.C040 user-mode instructions. How-

136 BYTE APRIL 1994

imum of compatibility
problems, the designers
did not write all the Macintosh API calls in
the PowerPC code.

The new Mixed Mode Manager is at the
heart of making disparate PowerPC code
and 68K code work together, while pro-
viding the benefit of both ISAs (instruction
set architectures). It allows functions in
the PowerPC ISA to call functions in the
68K ISA and vice versa.

Essentially, the Mixed Mode Manager
is a stack-frame transformation engine.
Switching between 68K emulation and
PowerPC execution is fairly straightfor-
ward, while converting a 68K stack into
a PowerPC stack can be quite involved.
The calling conventions used by the Mac-
intosh 68K model are dependent on the
language (Pascal, C, and 68K assembly
language each use a different calling con-
vention), while the PowerPC has a unified
strategy for all languages.

This problem is resolved by supplying
a UPP (Universal Procedure Pointer) for
all exported functions. The UPP points

REPORT

directly to 68K code (on a 68K Mac) or to
a routine descriptor (on a Power Mac). A
routine descriptor is a data structure that
gives the Mixed Mode Manager the nec-
essary pointers to the actual implemen-
tation(s) of the function, either in 68K
or PowerPC code. The routine descriptor
also provides information on the func-
tion’s language-calling convention (Pas-
cal, C, or assembly language), the number
of arguments used, and their size. This
way, the Mixed Mode Manager can de-
termine what ISA to use when jumping
to a called function, as well as how to
massage the stack parameters if an ISA
context switch is involved (see the figure
“The PowerPC Stack During an ISA Con-
text Switch”).

For calls made to the parts of the Mac
API that are written in PowerPC code, the
thread of execution proceeds as follows.
First, a routine descriptor is encountered,
which invokes the Mixed Mode Manag-
er. The Mixed Mode Manager uses the
routine descriptor information to place any
passed parameters into a switch frame for
use by the PowerPC function. The routine
descriptor also points to the transition vec-
tor, which in turn points to the code frag-
ment’s globals and code. The Mixed Mode
Manager uses the transition vector to pass
control to the target code fragment.

Apple has supplied headers that define
UPPs for every Macintosh API function, so
porting existing code to a Power Macintosh
should be transparent to the programmer.
You have to write a UPP only if you are
writing a plug-in module, an extension,
or a custom procedure. This UPP lets
the Mixed Mode Manager know what to
expect when functions in your code are
called.

Memory Management
By and large, system-level memory man-
agement on the Power Macintoshes has
not changed from that of 68K Macs. The
design decision for this was strongly in-
fluenced by the desire to maintain com-
patibility. There is, however, one major
enhancement: file mapping, which is es-
sentially virtual memory where the back-
ing-store data for the application is the
code fragment itself. Put another way, an
application’s code fragment on disk is
mapped into a logical address space above
the backing-store file. (The backing-store
file is where virtual memory is written out
to disk.)

As other applications run, a background
application’s variables might be swapped

” out to the backing-store file. The only time
r = that code fragments are loaded into mem-
ory is when they execute. When the section
of memory in which a code fragment re-
sides must be reused, that fragment simply
» gets purged, because fragments are read-
only code: No changes need to be swapped
out to the backing store. When necessary,
the fragment is read back into memory.
This minimizes disk /O, because the only
data actually written to the backing-store
file is an application’s variables, not the
invariant code in the fragment.

The major benefits of file mapping, be-
sides virtual memory, are that PowerPC-
, \Q based applications do not consume valu-
\\ : able virtual memory space in the swap file;

and application heaps do not need to be
i so large, because the application code itself
is not within the heap. Therefore, a user
can run more applications within the same-
size virtual memory footprint. The Mac-
intosh 68K segmented application strate-
gy, on the other hand, is not a flat memory
i o model, it supports self-modifying code
(e.g., the jump table), and in general it does
not lend itself well to file mapping.

z Back to the Future
> = The speed and power of the PowerPC pro-
cessor has enabled Apple to accomplish
what many thought couldn’t be done: in-
corporate a RISC chip into a mainstream
consumer product. The 68L.C040 emulator
allows the existing base of 68K applica-
| - tions to operate with good performance.
: The Macintosh API provides public entry
; points that enable existing 68K applica-
} tions to access system resources. It also
or taps into the speed offered by the oper-
ating-system functions that are written
in PowerPC code. The new Mixed Mode
Manager seamlessly integrates the two
incompatible processor ISAs into one
smoothly operating whole.
Nevertheless, this major design im-
provement is not just for backward com-
patibility. The new Power Macintosh ap-
plication run-time architecture is also ready

| \V iy T — for the time when applications can more
|| ' A i l‘i I

=
—

- easily communicate with one another and
i J X share resources. It lays a solid foundation
on which a microkernel-based operating
system with memory protection, preemp-
tive multitasking, and multiple threads will
evolve. @

Randy Thelen is a-system software engineer for
Apple Computer (Cupertino, CA). You can reach
him on AppleLink as “RANDOM,” on the Internet
at random@applelink.apple.com, or on BIX c/o
“editors.”

Circle 279 on Inquiry Card.

