
June 2006

Programming Then and Now:
From the LGP-30 to the Laptop

Keith Smillie

Vulgar languages that want
Words, and sweetness, and be scant
 Of true measure,
···
He that first invented thee,
May his joints tormented be,
 Cramp’d for ever;
 Ben Jonson (1573 – 1637),
 A Fit of Rhyme Against Rhyme.

 The LGP-30, the University of Alberta’s first computer, was delivered in October 1957 and was soon

used extensively for teaching and research throughout the University. It was replaced by an IBM 1620 in

May 1961, but continued to be used for teaching for another two years. We shall use the LGP-30 as a

starting point for a brief look at the evolution of computing in the Department of Computing Science at

the University of Alberta. We describe the LGP-30 and its programming in some detail, giving some

sample programs which have run on an LGP-30 simulator. We shall then give a very brief summary of

the various computers that have been used in the Department subsequent to the LGP-30. Then we shall

discuss the various programming languages that have ben used in introductory courses in the Department.

To provide some continuity in this discussion and a basis for a comparison of the various languages we

shall give an example, in a couple of instances two examples, of a program in each language for the

problem of finding the frequency distribution of the faces which occur when an unbiased die with an

arbitrary number of sides is thrown an arbitrary number of times.

 However, to emphasize that computing did not begin at the University of Alberta with the LGP-30,

we shall begin with a few notes on the means of computing, or more prosaically simply the means of

doing arithmetic, in the period since the University was founded in 1908 until the introduction of the

LGP-30 almost exactly fifty years later.

Slide rules, mathematical tables and calculators
 Apart from hand calculations, the principal means of calculation in the period before the electronic

computer were slide rules, mathematical tables, and desk calculators, or some combination of these aids.

Slide rules, which gave only about three-figure accuracy, were used by many faculty and students

throughout the campus. There was one 42-inch slide rule which hung for many years in the University

Bookstore over the counter where the almost universal ten-inch slide rules were sold. It is now part of a

permanent exhibit of early calculating devices and machines just outside the offices of the Faculty of

Science in the Biological Sciences Building.

 For many years the Department of Mathematics used a set of mathematical tables prepared by

Professor J. W. Campbell who came to the University in 1920. These tables contained the usual tables for

the common logarithm, square, cube and reciprocal, circular and exponential functions, as well as an

extensive table of the hyperbolic function which Professor Campbell “himself calculated on a hand

machine”. These tables were first published locally in 1929, and were reprinted in 1946. At some

subsequent date they were replaced by Knott’s Four-Figure Mathematical Tables, first published in 1900,

and were used until the mid 1960s. The front cover bore the following warning printed in red: “THIS

BOOK IS THE PROPERTY OF THE UNIVERSITY OF ALBERTA. It must not be defaced or mutilated.

Private possession may be cause for action by the University authorities.” They were eventually

remaindered in the University Bookstore for twenty-five cents each. The only other mathematical tables

of which there appears to be any record are the eight-place Vega tables used in the Faculty of Engineering.

Of couse, many textbooks contained in appendices a selection of tables related to the subject treated in

the text.

 A variety of desk calculators, both hand-operated and electrically driven, were used throughout the

University. In the Department of Mathematics there were hand-operated Munroe and Multo calculators as

well as a couple of electrically driven calculators. There was also the Swedish-built Odhner calculator

weighing thirteen pounds in which multiplication and division were performed by addition and

subtraction with repeated shifting. The cover of the small instruction booklet had a picture of a tastefully

dressed young woman displaying the calculator, together with the following text: “Let Original-Odhner

do the work for you. Learn to count the modern way on the new, attractively styled Original-Odhner.” In

the Faculty of Agriculture the Munromatic was used for statistical calculations since it allowed the

simultaneous calculation of sums, and sums of squares and cross-products as well as, by means of a

counter attached to the side of the machine, the number of sets of data being accumulated.

 Some texts had sections on the use of desk calculators. One we shall mention is the two-volume

statistics text co-authored by Professor E. S. Keeping of the Department of Mathematics. In the

introductory chapter of the first volume there is a short section entitled “Calculating Machines” in which

we read the following: “A calculating machine is constructed to add and subtract. By means of continued

addition and subtraction, operations involving multiplication, division and square root can also be

performed with great speed.” Later in the same section he gives details for performing repetitive

calculations using as an example finding the values of “12 + 6x for x = 5, 7, 15, 12, etc.” (In 1961 the

 2

Department of Mathematics moved into the newly opened Physical Sciences Centre. The booklet

commemorating the official opening had a photograph of the computing room showing a number of well-

dressed middle-aged faculty members, including Professor Keeping, seated at tables using desk

calculators.)

 Finally we shall mention the Millionaire Calculator, a large and cumbersome machine measuring 25

inches by 12 inches by 6 inches and weighing up to 120 pounds, which was first produced in Switzerland

in the mid 1890s. Between 1894 and 1935 a total of 4655 Millionaires were sold in Europe and the United

States with government agencies being the largest customers. The title page of the brochure advertised

“Calculating machines of superior workmanship, embracing Expedition and Accuracy in reading results

in the Four Rules of Arithmetic, Economy in Time and Energy of the Operator.“ The following page said

that “[It] is the most efficient Calculating Machine in the world. Requires only one turn of the crank for

each figure in the Multiplier.” For many years there was a Millionaire in a display case in the Department

of Mathematics. How it arrived there or whether it was ever used is not known. It is now part of the

calculator exhibit in the Faculty of Science. Beside it is a key ring with a calculator about one inch square

which can perform addition, subtraction, multiplication, division, and square root.

The University of Toronto FERUT
 The first use of an electronic computer on the campus was in the Department of Physics which in

May 1957, a few months before the LGP-30 was purchased, established a teletype connection with the

FERUT, Ferranti Computer at the University of Toronto. The teletype machine was located in what was

termed a “glorified closet” in the basement of the Arts Building and a connection was established on

Tuesday evenings. The system was said to have worked tolerably well except when there was a

thunderstorm anywhere between Edmonton and Toronto.

 FERUT was a fixed-point one-address binary computer with a most idiosyncratic order code. One

example in the Programmers’ Handbook had the following program fragment to replace a number stored

in memory location / C by its cube:
 /
 E I S T /
 @ / C / K
 A / C / F
 : / C / A
 S / C / F
 I / C / A

(One user reputedly remarked that the preponderance of the symbol / in machine-language programs was

reminiscent of the rain in Manchester where the computer had been designed and built.)

 3

 It is no wonder that the staff of the Computing Centre at the University of Toronto developed

Transcode which enabled FERUT to be progrmmaed as a floating-point, three-address decimal machine

with a very much simplfied order code. Patterson Hume, one of the developers of Transcode, recently

said that “It literally changed everything overnight, whereby creating a computer language so that people

who work with code could commumicate in English (i.e. their natural language).”

The LGP-30
 The LGP-30 was ordered in September 1957 and arrived the following month. The original

installation consisted of the computer with a Flexowriter console (a modified electric typewriter with a

mechanical paper tape reader and punch), a photoelectric paper tape reader and a mechanical paper tape

punch, and an additional Flexowriter for the preparation of program and data tapes. It was installed first in

the basement of the Arts Building but was soon moved to the Arts Building Annex.

 The LGP-30, which was termed a “desk computer” not because it could be placed on a desk but

because it was the size of a desk, was 26 inches deep, 33 inches high and 44 inches long, and weighed

about 800 pounds. One user described it as “a great hunk of a machine – about the size of a deep freeze.”

The main memory consisted of a magnetic drum with a capacity of 4096 32-bit words arranged in 64

tracks of 64 sectors each with one word per sector. There were three circulating registers: the

Accumulator Register for arithmetic operations, the Instruction Register for holding the current

instruction, and the Control Register for the address of the next instruction to be executed.

The internal operation was binary so that all data had to be converted from decimal to binary on input

and from binary to decimal on output. Data were assumed to be represented in fixed-point form and less

than unity in absolute vale. Negative numbers were represented as two’s complements. The format of a

word representing a number was the sign bit (0 for a positive number and 1 for a negative number)

followed by 30 bits for the magnitude. The 32nd bit was normally not used in the representation of either

numbers or instructions but was a “spacer” bit separating words on the magnetic drum.

There were very few reference manuals for the LGP-30. There was a glossy illustrated Operations

Manual which was printed, and the following manuals which were typescript: Programming Manual,

Programming Class Notes, and a manual entitled Subroutine Manual Coding Sheets giving various utility

programs. There was also a manual for an “algebraic compiler and translator system”. The Programming

Manual consisted of fifty-six coil-bound pages written in understandable but rather unpolished prose. The

introductory paragraph contained the following interesting assertion: “Programming the Royal Precision

LGP-30 is basically simple. Understanding certain problems requires certain knowledge, however

programming for the LGP-30 does not.” As we give a very brief introduction to machine-language

programming in the next section, the veracity of this assertion may well be questioned.

 4

LGP-30 programming - A simple example
 We shall introduce machine-language programming by discussing a program to find the sum of two

arbitrary numbers. For test data we shall use the integers 5 and 7.5 which have the sum 12.5. We shall

assume that the two numbers to be summed are already stored in memory and that the sum is to be stored

in memory.

 There are sixteen instructions for the LGP-30, only four of which will be used in this example. Each

instruction has a one-address format giving the operation to be performed and the address, i.e., location in

memory, of the single operand. As we noted in the last section, arithmetic in the LGP-30 is performed in

the one-word Accumulator Register. Therefore the program for finding the sum may be stated in words as

follows:

 Bring the first number to the Accumulator; Add the second number, and retain the

sum in the Accumulator replacing the value of the operand which was previously there;

store the sum in a specified word in memory and Hold the sum in the Accumulator; Stop.

Now we must assign locations in memory for the two numbers to be added and for their sum, and for the

program. We shall assume somewhat arbitrarily that the first number is stored in location 3750, i.e., on

track 37 and sector 50, and the second number in location 3751. The program, which consists of four

instructions, will be stored in locations 0100, 0101, 0102 and 0103, and the required sum in location

0104. We may now give the program in the conventional manner of showing machine-language

programs with the instructions given one-per-line with the locations in memory on the left and comments

on the right:

 0100 b3750 Bring first number to Accumulator
 0101 a3750 Add second number
 0102 h0104 Store sum
 0103 z0000 Stop
 0104 Sum

Now let us see how this program is stored in the memory of the computer. Each instruction occupies

one 31-bit word, where the bits are numbered 0, 1, 2, ..., 30. The operation is represented by bits 12, 13,

14 and 15, and the address of the operand by bits 18 to 29, inclusive. The following shows the contents of

the four locations with addresses 100, 101, 102 and 103:
0000000000000001001001011100100
0000000000001110001001011100110
0000000000001100000000010001000
0000000000000000000000000000000

The bits representing the instructions as well as those representing the addresses are in bold. We see that

the operation Bring is represented by 0001 in binary which is 1 in decimal, Add by 1110 or 15, Hold by

 5

1100 or 12, and Stop by 0000 or 0. The address 3750 of the first operand is given by 100101110010

where the first six bits 100101 give the track and the second six 110010 the sector. This corresponds to

the external representation of 37 for the track number and 50 for the sector. The addresses of the

operands in the remaining three instructions may be interpreted similarly, and we note the address of the

Stop instruction is not used.

 We have said that all data stored in memory is in binary and that each number is considered to be less

than unity in absolute value. This restriction applies to data that are input initially and to all numbers that

are calculated by the program. The procedure of ensuring that these conditions are met throughout a

computation is known as “scaling” and may be considered to be one of the most troublesome problems in

machine-language programming. Conversion of data from decimal to binary on input and from binary to

decimal on output was handled by subroutines in the small program library supplied with the LGP-30

and need not concern us here. However we shall consider the scaling required in our simple example of

finding the sum of two numbers.

 If the two numbers, 5 and 7.5, to be summed are each divided by 23 or 8, the quotients are 0.625 and

0.9375, respectively, so if converted to binary may be represented in memory. However, this scaling is

not satisfactory since their sum is 1.5625 which is greater than 1. Thus scaling by a division by 24 or 16 is

required giving addends of 0.3125 and 0.46875. The sum of these numbers is 0.78125 which when

multiplied by the scale factor of 24 gives the required decimal sum of 12.5. This sum would be stored in

location 0104 in memory as
 0110010000000000000000000000000

representing the binary number

 0.11001000...

which has the decimal value 2-1 + 2-2 + 2-5 or 0.5 + 0.25 + 0.03125 or 0.78125.

 In the next section we shall discuss the complete order code of sixteen instructions for the LGP-30

and also an LGP-30 machine-language simulator which was used to run a number of machine-language

programs including those discussed in this paper. In the following section we give three short programs as

further examples of LGP-30 programming in machine language. The first of these programs has been

taken from the course notes for what is possibly the first programming course given at the University of

Alberta, and the second is a variation of this program illustrating the use of subprograms.

 The third example is a program for finding the frequency of occurrence of each of the faces when a

die with an arbitrary number of sides is thrown an arbitrary number of times. We shall assume that the

number of faces may be any number between 1 and 20, inclusive, keeping in mind that unbiased dice

exist only for the five Platonic solids, i.e., the tetrahedron, cube, octahedron, dodecahedron and

icosahedron with 4, 6, 8, 12 and 20 sides, respectively. This example will be used throughout the

 6

remainder of this paper in the discussion of the development of programming languages. For sample data

we shall use the results
 1 4 2 3 1 1 3 3 4 2 3 4

of throwing a four-sided die 12 times which gives the following frequency table with the face numbers in

the first column and the frequncies in the second:
 1 3
 2 2
 3 4
 4 3

In many of the programs the list of data is preceded with an integer giving the number of faces on the die

and ends with a zero acting as a flag indicating the end of the data. Therefore the sample data are often

given as

 4 1 4 2 3 1 1 3 3 4 2 3 4 0 .

 The reader who is not interested in a further understanding of machine-language programming for the

LGP-30 may safely skip the following two sections.

LGP-30 programming – Order code
 We shall list the sixteen machine-language instructions for the LGP-30 giving for each its name, its

one-letter, binary and decimal representations, and a brief description of its function. An instruction may

be represented as op addr, where op represents the operation and addr the operand. Note that the

definitions of the Input and Print instructions given here correspond to the implementation of these

instructions in the LGP-30 simulator discussed at the end of this section rather than to their

implementation in the LGP-30 computer.

Stop: z 0000 0

 z 0000 Stop computation.

Bring from Memory: b 0001 1

 b addr Replace the contents of the Accumulator by the contents of location addr.

Store Address: y 0010 2

 y addr Replace the contents of the address portion of memory location addr with the contents of

 the address portion of the Accumulator.

Return Address: r 0011 3

 r addr Replace the address portion of memory location addr by one plus the value of the

 Counter Register.

 7

Input: i 0100 4 (See note at beginning of definitions)

 i 0000 Input one 7-bit character from the (simulated) tape to the Accumulator displacing the

contents of the Accumulator 7 bits to the left with a maximum of 28 bits in the

Accumulator..

Divide: d 0101 5

 d addr Divide the number in the Accumulator by the number in memory location addr and

 store the quotient in the Accumulator.

N multiply: n 0110 6

 n addr Multiply the number in the Accumulator by the number in memory location addr

 and store the least significant 31 digits of the product in the Accumulator.

M multiply: m 0111 7

 m addr Multiply the number in the Accumulator by the number in memory location addr

 and store the appropriate sign bit and the most significant 30 digits of the product in the

 Accumulator.

Print: p 1000 8 (See note at beginning of definitions)

 p addr Append the contents of the Accumulator to the (simulated) printer.

Extract: e 1001 9

 e addr Form the logical product of the contents of the Accumulator and the contents of

 memory location addr and store the result in the Accumulator.

Unconditional transfer: u 1010 10

 u addr Replace the number in the Counter Register with addr.

Test: t 1011 11

 t addr If the number in the Accumulator is negative, replace the number in the Counter Register

 by addr.

Hold and Store: h 1100 12

 h addr Store the contents of the Accumulator in memory location addr and leave the contents of

 the Accumulator unchanged.

Clear and Store: c 1101 13

 c addr Store the contents of the Accumulator in memory location addr and clear the

 contents of the Accumulator.

Add: a 1110 14

 a addr Add the number in the Accumulator to the number in memory location addr

 and store the sum in the Accumulator.

 8

Subtract: s 1111 15

 s addr Subtract the number in the Accumulator from the number in memory location addr

 and store the difference in the Accumulator.

 In order to run the machine-language programs given in the previous section and in the following

section an LGP-30 simulator was written in the J language. This simulator is available at

 www.cs.ualberta.ca/~smillie/Jpage/Jpage.html

which contains information on the J language as well as links to further information on J. Here we shall

show only how to input, run and display the result of the sample program for finding the sum of two

numbers given in the previous section. The following gives an annotated record of the processing of this

problem:
 NB. *** Sum of two numbers ***

 NB. Program as a 4-item character list

 Prog1=: 'b3750';'a3751';'h0104';'z0000'

 NB. Data with scale factors as a 2-item list

 Data1=: 5 4;7.5 4

 NB. Reset memory

 Reset ''

 NB. Load program into locations 100, 101, 102, 103

 100 Load Prog1

 NB. Load data into locations 3750, 3751 and convert to binary

 3750 Load Data1

 NB. Run program starting with instruction in location 100

 Run 100

 NB. Convert to decimal and display unscaled sum stored in location 104

 4 Show 104

 12.5

LGP-30 programming – Three examples
One of the first, if not the very first, programming course at the University of Alberta was given by

Bill Adams in January and February of 1960. Bill was a part-time programmer in the Computing Centre

and became one of the founding members of the Department of Computing Science when it was formed

in April 1964. His course notes, hand-written on yellow paper, still exist and make interesting reading

over forty-five years later.

 The first programming example given in the notes was to find the area of the annular ring formed by

two concentric circles of given radii. The required area is the area of the larger circle minus the area of the

smaller circle, or πR2 – πr2 where R and r are the two radii. This expression may be written as

 9

 π(R + r) (R – r)

which is the form Bill used in his program shown below. We note that the scaled values of R, r

and π are assumed to be stored in memory locations 0010, 0011 and 0009, respectively, and the

sum in location 0012.
0000 b0010 Bring R to accumulator
0001 a0011 Add r
0002 c0012 Store R + r
0003 b0010 Bring R to accumulator
0004 s0011 Subtract r
0005 m0012 (R + r) × (R – r)
0006 m0009 pi × (R + r) × (R – r)
0007 c0012 Store Area of ring
0008 z0000 Stop
0009 3.14159) Scaled
0010 R) binary
0011 r)
0012 Area of ring)

Area of an annular ring

 The second example is a variation of this problem where the required area is found as the difference

of the areas of the two circles where the area is calculated in a subprogram. The main program occupies

locations 0000 to 0013 and the subroutine locations 0100 to 0105. We note the use of the Return

Address instruction in lines 0001 and 0005 of the main program to set the appropriate return links in line

0103 of the subprogram. The program and subprogram are shown on the next page.

 The third example, as has been mentioned in a previous section, is finding the frequency of

occurrence of each of the faces given the results of throwing an unbiased die with an arbitrary number of

faces an arbitrary number of times. The program is shown as the first program in the Appendix which

gives the programs for this example for each of the programming languages discussed in the following

sections of this paper.

0000 b0011 Bring r to accumulator
0001 r0103 Set return link
0002 u0100 Transfer to subroutine
0003 c0012 Store area of smaller circle
0004 b0010 Bring R to accumultor
0005 r0103 Set return link
0006 u0100 Transfer to subroutine
0007 s0012 Subtract area of smaller circle
0008 h0013 Store area
0009 z0000
0010 R) Scaled
0011 r) binary
0012 Area of smaller circle)
0013 Area of ring)

 10

0100 h0105 Hold radius
 0101 m0105 Square radius

0102 m0104 Multiply by 3.14159
0103 u0000 Return link

 0104 3.14159 Scaled binary
 0105 Temporary storage

Area of an annular ring with subprogram

This is the last time we shall have to consider the troublesome problem of scaling to ensure that all

data and all numbers arising during the computation are less than unity in absolute value. We note that

the input data, i.e., the number of faces on the die and the results of throwing the die, are scaled with a

scale factor of 5 so that, for example, a face value of 3 would be stored as
0000110000000000000000000000000

which would represent the value 3 × 2-5 or 0.09375. The frequencies, 3, 2, 4 and 3 in this example, are

scaled for programming convenience with a scale factor of 29 and would appear in memory as follows:
0000000000000000000000000000110
0000000000000000000000000000100
0000000000000000000000000001000

 0000000000000000000000000000110

LGP-30 programming – The ACT I compiler
 To simplify programming for the LGP-30 the ACT I Compiler (Algebraic Compiler and Translator)

was introduced in 1959. Unfortunately it arrived too late for any serious use at the University of Alberta,

but Bill Adams recalled recently his "shock and disbelief that such a thing would work". The compiler

was documented in a short eighteen-page manual which was simply but attractively produced. The body

text was in Small Capitals while example programs and all other statements, phrases, names and symbols

in the source language were in Regular font. The first paragraph of the Introduction is an excellent

statement of the motivation for its development and the philosophy of its design:

 The Royal McBee ACT I Programming System was designed to make the programmer's job

of coding as painless as possible. Programming information is presented to the LGP-30 in much

the same manner as might be used to explain a problem to a colleague. The common basis for the

exchange of mathematical ideas is the language of algebra. This common language of algebra is

the basic language of the ACT I Programming System. It has been augmented somewhat beyond

basic algebra to give the programmer the power to insert logical decisions into his program and to

work with arrays or sets of parameters as readily as handling one variable or constant. This new

language is known as the “source” language; it is this language that this manual deals with.

 11

Although primitive when compared with programming languages today, it is a most remarkable

accomplishment of its own day. It is easy to see the enthusiasm with which it was greeted when it was

released especially by those who had experienced the drudgery of months or even years of machine-

langauge programming.

 We shall make only a few remarks on the language. The objects in the language with the modern

designations in parentheses were symbols (variable names), operations (operators, functions, verbs),

constants, brackets (parentheses), statement symbols (labels) and region symbols (array names). Symbols

could have up to five alphanumeric characters and were limited to 127 in number; there were 63 primitive

operations including the machine-language operations; constants were limited to 39 in number; and

statement symbols were of the form s0, s1, ..., s255. The ACT I program for the dice-throwing example is

given in the Appendix.

After the LGP-30
 In this section we shall give a very brief discussion of the computer hardware that became available to

the Department of Computing Science, in either the Computing Centre or the Department, since the

acquisition of the LGP-30 in 1957. The main theme of this paper, which is the use of programming

languages in the Department, is resumed in the following section.

 As we noted at the beginning of this paper, the LGP-30 was replaced by an IBM 1620 in May 1961

although the LGP-30 was kept for teaching purposes for another two years. The original IBM 1620 was

replaced later in the same year it was acquired by a larger 1620 system with a card reader and punch, and

the original 1620 was acquired by the Alberta Research Council which had been using about forty percent

of the available time on it. The 1620 was used on an open-shop basis, as had the LGP-30, with users

debugging and running their own programs. However as demand increased a gradual change to a closed-

shop operation was initiated in which card decks were submitted by users and then run by Computing

Centre staff. On April 1, 1963 a completely closed-shop operation was instituted.

 In order to meet the increasing demand for computing time an IBM 7040/1401 was installed during

the summer of 1964 and the IBM 1620 was phased out during a three-month period. The new system

consisted of a central processor with 32 768 words of core memory, six tape drives soon augmented by

more tape drives, and peripheral input and output. Even this system proved inadequate to meet the

demand and it was replaced in the summer of 1967 by an IBM 360/67 which itself was upgraded several

times over the next few years. By November 1969 the system had a total of 768 000 bytes of core storage,

a magnetic drum, two disk drives each with eight discs, eight tape drives, two card readers and punches,

and fifty-six terminal ports allowing interactive time-sharing capability. The IBM 360/67 continued to be

upgraded with additional printers and tape drives and by the end of 1974 was operating at full capacity.

 12

The following year it was replaced with an Amdahl 470 V6 which was soon upgraded and then replaced

with an Amdahl 580.

 The IBM 360/67 and later systems could be accessed either by batch processing or interactive remote

terminals. A student-oriented batch facility or SOBF was developed to allow student programs to be

processed quickly and efficiently. Students were issued “SOB tickets”, each valid for one run. Those

students using up their allowance of tickets could purchase “SOB balls”, each costing five cents and

equivalent to one ticket, made of transparent plastic and dispensed by a gum-ball machine that had been

purchased at an auction. During the 1979/80 academic year the SOB facility was replaced with batch

entry from terminals, and punched-card entry of programs and data was no longer available much to the

dismay of a few users.

 During this rapid expansion of computing facilities available to the University there was a similar

growth of facilities in the Department of Computing Science beginning in 1970. The first computer was a

used Digital Equipment Corporation PDP-9 costing 19 700 dollars with 8K memory, teletype console and

oscilloscope display, a paper tape reader and punch, and a card reader. This was the first of many PDP

systems that were acquired by the Department. At first the Michigan Terminal System was used as an

operating system but in 1973 this was replaced by the UNIX operating system, possibly the first use of

UNIX outside of the Bell Laboratories where it had been developed. Other computers acquired by the

Department included the Nanodata QM-1, VAX 11/780s which replaced the PDP computers in the early

1980s, and Sun-1 workstations.

 The first desktop computer in the Department was the IBM 5100 purchased in 1975 for 18 300

dollars. It measured about 18 inches by 24 inches by 8 inches, weighed forty-eight pounds and fitted

conveniently on the top shelf of an audio-visual trolley so that it could be easily moved between

classroom and faculty offices. It was used for teaching and research with APL and to a limited extent for

teaching BASIC. (The IBM 5100 was followed in 1981 by the IBM 5150 and two or three years later by

the IBM 5155; these machines were better known as the IBM PC and IBM XT, respectively.) The

Department of Computing Services installed its first microcomputer laboratory consisting of twelve IBM

PCs in October 1982 and its second with twenty-eight PCs in 1984. The Apple Macintosh was announced

in 1984 and in the same year four Macintosh laboratories with a total of 100 Macintoshes were opened. It

was the Macintosh rather than the IBM Personal Computer that caught the fancy of most, but not all, of

the academic staff of the Department of Computing Science which used these machines very

enthusiastically for much of their teaching.

 To not prolong this discussion of hardware we shall jump to the present time. Faculty have one or

more computers in their offices, and probably a similar number at home. Most students have a personal

computer and often carry them to campus. The laboratories in the Department of Computing Science have

 13

a total of approximately 230 work-station positions, and the small seminar rooms have facilities for visual

presentations.

 Finally how may we measure the evolution of hardware over the 50 years since the introduction of the

LGP-30 in 1957? The LGP-30 was an 800-pound desk-sized computer costing 40 000 dollars in 1957

which is approximately 280 000 dollars today. It had a memory of 4096 32-bit words, i.e., 0.000016 GB.

Multiplication time in one list of specifications is given as 24 000 microseconds. Software for the LGP-30

consisted of a few subprograms for input-ouput operations, floating-point arithmetic and some of the

more common mathematical functions. Now one thousand dollars will purchase a laptop weighing only a

few pounds with a 60 GB hard drive and a speed of 1.66 GHz. (Multiplication on a roughly comparable

desktop was estimated at 0.02 microseconds.) Software for the laptop is an operating system and optional

packages for word processing, photo editing, and whatever programming languages, if any, the user

requires.

Programming languages
 Now we turn to a very brief look at the programming languages that have been used in introductory

courses in the Department of Computing Science. Of course some of these languages, especially Fortran,

have also been used throughout the University for research purposes. We shall divide these langauges into

two groups, In the first group are the conventional “word-at-a-time” languages where the basic item of

computation is the individual number or character so that operations on lists, e.g., summing a list of

numbers, is performed by handling the numbers in turn as they would be if they were summed using a

pocket calculator. In this group we include Fortran, BASIC, Algol W, Pascal, C and C++, Java and Perl.

The second group will consist of array languages in which the basic item of computation is the array, e.g.,

one-dimensional lists, two-dimensional tables, and in some languages arrays of arbitrary dimension. This

group will include spreadsheets (which many persons would not consider to be languages), MATLAB,

and APL and its modern dialect J.

 For each of the languages mentioned above we shall make a few historical remarks, and then give,

mostly in the Appendix, the dice frequency program for that language. For some languages we shall give

more than one version of the program in order to illustrate how the language has evolved. We note that all

of the progrms have been debugged, sometimes with help duly acknowledged at the end of the paper,

except those for the LGP-30 ACT I compiler already given, the University of Waterloo Watfiv compiler

for Fortran, and Algol W. Then we shall attempt to make some general comparisons of these programs by

noting their similarities and differences, and give some suggestions for alternative ways of introducing

programming languages in a computing science curriculum.

 14

 We shall conclude this section with a few remarks about two languages which were never used in

introductory courses in the Department but which for different reasons may be appropriate to mention

here. These two languages are PL/I and Algol 68.

 PL/I is a language developed within IBM in the 1960s to serve as a general-purpose language for

scientific, commercial and special-purpose applications on their System/360 computers. We cannot recall

ever hearing the suggestion that we should consider its use in the Department. However, in the mid 1970s

a very strongly worded letter filtered down from the highest echelons in the University administration

supporting a complaint from the Edmonton offices of a large company that we were remiss in not

teaching our students PL/I because it was being used in their company. One very firm, but polite, letter

from the Department saying that it was not our purpose to teach what was immediately useful in the

marketplace terminated our involvement in the discussion.

 Algol 68, as the name implies, is in the Algol family of languages, and was designed and

implemented over a number of years starting in the 1960s. It is a language which was designed by a

committee whose membership was, initially at least, about two-thirds European, and which some people

termed an unruly committee which finally broke up in disarray, We mention Algol 68 here only to pay

tribute to a colleague, Barry Mailloux, who was one of the leading members of the committee and one of

the authors through its many drafts of the Final draft report on the algorithmic language ALGOL 68

published in 1968. Barry received an M.Sc. from the University of Alberta in 1963, and then went to the

Mathematisch Centrum, Amsterdam where he wrote his doctoral dissertation on Algol 68. On the

completion of this work in 1968 he joined the Department of Computing Science where he became noted

for his enthusiasm for Algol 68 and for his unfailing amiability. Sadly, Barry died of a brain tumour in

1982.

Conventional languages
 In 1954 IBM formed a small group headed by John Backus, to develop an automatic programming

system for the IBM 704 that would produce efficient object code that would execute at a speed about the

same as hand-generated code. The language was called Fortran for “Formula Translating (Language)”.

Emphasis was on efficiency of compilation and execution rather than on the design of the language.

Indeed Backus remarked in retrospect that they simply made up the language as they went along and did

not regard language design as a difficult problem. Fortran I was available in 1956 for the IBM 704, and

the first paper on the language appears to have been given at the Western Joint Computer Conference in

1957. In 1958 Fortran II was officially released for the 704 and shortly after for other IBM systems. Later

versions of Fortran include Fortran IV released in 1964 and Fortran 77 and Fortran 90. Fortran was

extensively used for teaching in the Department of Computing Science, and for research throughout the

 15

University. The Appendix gives Fortran programs for the dice frequency problem written in the style of

Fortran II and also of the University of Waterloo Watfiv that was used in the Department. In the very

early 1970s Fortran was replaced in courses for computing science students by Algol W although it

continued to be used for some years in service courses.

 BASIC, for Beginner’s All-purpose Symbolic Instruction Code, was developed at Dartmouth College,

a small liberal arts college in Hanover, New Hampshire. (Incidentally, it was at a meeting of the

American Mathematical Society at Dartmouth College in 1940 that George Stibitz of the Bell Telephone

Laboratories first demonstrated the remote use of a computer over a communications line.) The BASIC

language was developed as an alternative to Fortran for non-science students that would be “friendly”,

easy to learn and use, and convenient to access. It was designed by a group led by John G. Kemeny, who

later became President of Dartmouth, and Thomas E. Kurtz. The first BASIC program under time-sharing

was run at about 4:00 a.m. on May 1, 1964, and the first published program was the following:
 10 LET X = (7+8)/3
 20 PRINT X
 30 END

BASIC proved to be an extremely popular language and now exists in many versions. Visual BASIC

released in 1991 provided a simple means of constructing graphical universal interfaces for using the

language. BASIC may now be considered an almost universal language and has been made available on

almost all computing systems. It has not been the most popular language in the Department but was used

in computer literacy courses in the 1980s and 1990s. The two BASIC programs shown in the Appendix

are in the style of the first BASIC and a more modern version and were both written using the QBASIC

implementation of the language.

 Algol, for “Algorithmic Language”, was developed in Europe in the late 1950s as a universal

programming language. It was described first in the Algol 58 draft report in 1958 and two years later in

the final Algol 60 report. Algol W was similar in many ways to Algol 60 but contained many

improvements. It was implemented at Stanford University on the IBM System 360. It was used in the

introductory course for computing science students for several years in the 1970s. As was noted in the last

section the Algol W program for the dice-throwing example has not been checked out since an Algol W

compiler is no longer avaialable.

 Pascal was originally developed by Niklaus Wirth of the Swiss Federal Institute of Technology

(ETH) in Zurich as a language that would be efficient to implement and execute and that could be used

for teaching the important concepts of computer programming. It was named after Blaise Pascal, the

seventeenth-century French philosopher and mathematician. The language was also defined formally

using Backus-Naur Notation which, some of us at least, thought should be introduced to students. There

 16

were various implementations of Pascal and several of these were used in various introductory computing

courses.

 The C programming language was developed at the Bell Telephone Laboratories in the early 1970s. It

was derived from a language named B, which was derived from an earlier language BCPL. Originally C

was designed as a systems language for the UNIX environment but was soon used for a large variety of

applications. The C++ language, also developed at the Bell Telephone Laboratories, might be described

as a superset of C with added features supporting classes. C and C++ have been used in introductory

computing courses in the Department.

 Java was originally designed for writing programs for computer chips embedded in electronic

appliances. However, it soon was found ideal for the design and implementation of programs intended for

distribution and use on the Internet. It is now the language introduced to first-year computing science

students.

 Perl, an acronym for “Practical Extraction and Report Language”, was developed in the mid 1980s as

a text-processing language for the easy and efficient manipulation of various types of files. It will be used

for rhe first time as a first language in an introductory course in the Department in the Fall Term 2006.

Array languages
 Although electronic spreadsheets became popular with the development of the VisiCalc program for

microcomputers in the late 1970s, paper spreadsheets have been used by accountants for a very long time.

The following two entries from The Random House Dictionary of the English Language. Second Edition

(1987) may give some perspective:

spreadsheet. 1. Accounting, a work sheet that is arranged in the manner of a mathematical matrix

and contains a multicolumn analysis of related entries for easy reference on a single sheet. 2.

Computers. See electronic spreadsheet.

electronic spreadsheet, a type of software for microcomputers that offers the user a visual

display of a simulated worksheet and the means of using it for financial plans, budgets, etc.

We should add to this second definition that any cell in an electronic spreadsheet may contain either a

numerical value, or some text, or a formula so that its value depends on the contents of one or more other

cells. As an example a cell might give the sum of the numbers given in a specified range of cells, and any

change in these values would cause the sum to be changed appropriately. Spreadsheets have been scarcely

mentioned in introductory computing science courses although some of the assignments intended for

solution with one of the conventional languages would have been almost trivial if a spreadsheet had been

used.

 17

 MATLAB, for “Matrix Laboratory”, was developed at the University of New Mexico and Stanford

University in the late 1970s so that students could use some of the Fortran matrix subroutine packages

without having to learn Fortran. MATLAB developed into an internationally used language for

mathematical and statistical computations, modelling and simulation, visualization, and symbolic

manipulation, to mention only a few of its applications. It has found only limited use in introductory

courses given by the Department.

 The APL language was developed by a native Albertan, Kenneth Iverson, as an alternative to

conventional mathematical notation which could be implemented interactively on a computer. Unlike the

conventional languages of the previous section, the data objects of APL are one-dimensional lists, two-

dimensional tables, and rectangular arrays of arbitrary dimension. There is a large number of arithmetical

and logical operations defined for these arrays as well as for individual numbers. On his retirement in

1991, Ken began the development of J, a “modern dialect” of APL which used the standard ASCII

character set rather than the specialized symbols of APL and benefited from the many years of experience

with APL in the very large community of users. APL was used enthusiastically by Bill Adams and myself

for teaching and research, and with less enthusiasm and much less extensively by a few other members of

the Department.

 The Appendix gives programs for the dice frequencies example using the Microsoft Works

spreadsheet, MATLAB, and J rather than in APL because of the convenience of the ASCII characters.

Another example
 As another, and penultimate, example of the development of programming languages since the

introduction of the LGP-30 we give at the end of the Appendix programs in LGP-30 machine language,

BASIC and J for the simple problem of finding the minimum, maximum and sum of a list of an arbitrary

number of positive numbers which could represent, say, book prices. In the LGP-30 program the data are

assumed to be stored in locations 0050, 0051, ..., and the results in locations 0031, 0032 and 0033. In

the BASIC program the data are given in the program and the the results are listed with a PRINT

instruction. In each of these programs the end of the list of data is flagged by a zero price. In the J

program the prices are given as the list Prices and there is no need to indicate the end of the list with a

zero price.

 We shall make a few remarks for the interested reader about the J program
Summary=: (<./,>./,+/)

as it undoubtedly appears somewhat cryptic to the uninitiated. In J the adverb / , which would be called

an operator in most languages, may be considered as a generalization of the familiar summation operator

Σ in conventional mathematical notation. Therefore if the list of book prices is given by

 18

 Prices=: 20.00 10.99 23.95 25.95 24.00 23.95 ,

then the sum is +/Prices, and the minimum and maximum are <./Prices and >./Prices,

respectively.

 We might mention that the “insert” adverb / which has been used here monadically with a single

argument has a dyadic form called “table” with two arguments. As an example of its use let the list
 D2=: 2 2 1 1 2 2 1 1 1 1

represent the results of tossing a coin 10 times, where the 1s represent heads and the 2s tails. Then the

expression 1 2 =/ D2 gives the table
 0 0 1 1 0 0 1 1 1 1
 1 1 0 0 1 1 0 0 0 0
where the 1s in the first row indicate the occurrence of heads on the 10 throws and the 1s in the second

row the location of tails. The expression +/"1 (1 2 =/D2) are the row sums 6 4 giving the

frequencies of heads and tails. This brief discussion may help explain the terseness of the J dice

frequencies program.

Comparison of languages
There are considerable differences between the languages in the three groups. Although we

considered machine-language programming for only the LGP-30, the detail required in even simple

programs – and their relative opaqueness when written - may be considered representative of most, if not

all, machine-language programming. In contrast, the supression of detail possible with conventional

languages and the use of natural language words in the type declarations and control structures and for

variable names simplifies the structure of programs and significantly improves their readability when

written. Array languages allow a further brevity of expression although the readability of the resulting

programs is a matter which has been hotly disputed.

To illustrate again, and very briefly, the differences in programs written in the three categories of

languages we shall consider the simple example of finding the maximum of a list of positive numbers

which could represent, say, book prices. In the machine-language program and in the first BASIC

program the list will terminate with a zero price indicating the end of the list, and in the second BASIC

program the list will begin with an integer giving the number of prices in the list. For the array-language

programs the list of prices will be given by itself.

The following is the LGP-30 machine-language program given as a 19-item list:
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 |b0017|c0003|c0019|b0000|c0020|s0020|t0008|z0000|a0019|t0011|u0013|b0020|
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 +-----+-----+-----+-----+-----+-----+-----+
 |h0019|b0003|a0018|h0003|u0003|b0100|z0001|
 +-----+-----+-----+-----+-----+-----+-----+

 19

The following are two very similar BASIC programs which may be considered representative of the

programs in conventional languages:
 REM Maximum 1 REM Maximum 2
 DATA 20.00,10.99,23.95 DATA 6,20.00,10.99,23.95
 DATA 25.95,24.00,23.95,0 DATA 25.95,24.00,23.95
 Maximum = 0 Maximum = 0
 READ Price READ N
 WHILE Price > 0 FOR I = 1 TO N
 IF Price > Maximum THEN READ Price
 Maximum = Price IF Price > Maximum THEN
 READ Price Maximum = Price
 WEND NEXT I
 PRINT Maximum Print Maximum
 STOP STOP
 END END

Assuming that the prices data have been entered into the spreadsheet or that the required variables have

been defined, the programs for the (Microsoft Works) spreadsheet, MATLAB, APL and J are given by

=max(A1:A6)if there are six prices, max(Prices), ⎡/PRICES and >./Prices, respectively.

 As great as are the differences in the programming languages between these three groups, we should

mention some of the similarities and differences within the group of conventional languages. For example,

repetition may be expressed in Fortran as DO I = 1 , N, in BASIC as FOR I = 1 TO N, in Algol W

as FOR I := 1 UNTIL N DO, and in Java as for (i = 1; i <= N; ++i). Repetition may also be

expressed, for example, in Watfiv as WHILE (D .GT. 0) DO, in Algol W as WHILE D > 0, and in C

as while (d > 0). Algol W, Pascal, C and Java each has a block structure while Fortran and BASIC

do not. Variable types cannot be declared in BASIC or in Perl, may be declared in Fortran, and must be

declared in Algol W, Pascal, C and Java. Subprograms are called “functions” and “subroutines” in

Fortran and “procedures” in Pascal. I maintain that these are differences of terminology, notation and

syntax and not of concepts. Also experience in teaching these languages indicates that students have the

same general problems with learning programming independent of the language. Only the details of the

problems differ between languages.

 In this discussion of the differences and similarities in the three groups of languages we have omitted

any mention of the pleasure, even the wonderment, in being first introduced to a conventional language

after having programmed in a machine language or to an array language after experience with

conventional languages. We did quote, though, Bill Adams’ expression of “shock and disbelief that [ACT

I] would work”. I had a similar experience in being introduced to Fortran after several years of

programming in machine language (for the National Cash Register 102A and 102D). Bill and I

experienced these emotions again in the mid 1960s when we were introduced to APL. Also I have always

found pleasure in using a spreadsheet in the solution of a problem however simple. While writing this

 20

paper I have found it nostalgic, and occasionally frustrating, to relive some of these experiences as I went

from machine language to conventional word-at-a-time languages and finally to array languages.

A first language
 There are still at least two questions that must be resolved when faced with the variety of

programming languages that are available. The first concerns the language we should use when

introducing beginning students to programming. The second, and I believe even more important, question

is how do we introduce students to programming. We shall address the first of these questions in this

section, and the second in the following and concluding section of the paper.

 In the past there have been those who have argued that we begin either with a machine language of

some kind before introducing whatever conventional language is then fashionable or with a conventional

language before introducing an array language or some applications package. There have been two very

good examples of this in the Department of Computing Science. The first occurred in the mid 1960s when

there was what might be politely called a “lively discussion” about using as a first language the machine-

and-assembly-language package MENTOR/MENTORSAP which had been developed in the Department.

This was eventually resolved amicably, and in a manner which is fortunately forgotten, over lunch in the

Faculty Club. Then about thirty-five years later a similar situation arose when students in one course were

first taught Pascal so that they would understand “programming” before being introduced to MATLAB.

To me all arguments that a lower-level language must be learned before the introduction of a language

which greatly simplifies the programming and solution of problems are fatuous. They deserve the

response of the eccentric and reclusive English engineer and physicist Oliver Heaviside (1850 – 1925)

who when hearing that a paper he had submitted to the Proceedings of the Royal Society had been

rejected partly because of his notation said “ Shall I refuse my dinner because I do not fully understand

the process of digestion?”

 Suppose now that we assume that a conventional language is introduced first, and leave further

mention of array languages until the next section. There is just so much that may be reasonably

introduced in a first computing course. Regardless of the language, a suggested list of topics, not

necessarily in the order of presentation, is the following:

• Constants and variables.

• Scalars, and one- and possibly two-dimensional arrays.

• Operators.

• Assignment statements.

• Repetition (for and while).

• Selection (if-then and if-then-else).

 21

• Input and output.

• Procedures and functions.

These concepts may be illustrated in lectures with simple examples and reinforced with simple

assignments in which programming style and documentation are as important as getting the correct

answer. Programming style should include the use of meaningful and suggestive names for variables and

procedures with names such as xxx and the all-too-common foo being rigorously eschewed. We are in

good company when we take care with the names we use for as one of the biographers of Charles Dickens

remarks “Names were very important to Dickens. ... They [his characters] did not exist until he had given

them a name and it is that which, like a spell, brings forth their appearance and behaviour in the world.”

 Any of the conventional languages introduced in this paper could be used to illustrate the

programming concepts given above. However Fortran may have become mostly a legacy language useful

for maintaining large projects without the need of reprogramming in a more recently introduced language,

while Algol W is probably no longer available. Both C and Java might be considered too complicated to

use as a first language, with Java in particular requiring the initial acceptance on faith alone of the

protocol demanded in even the simplest of programs. It is too soon to give an opinion on Perl, and we

should look forward with considerable interest to the experience with the proposed experimental course.

This leaves BASIC and Pascal with the academic flavour and formal definition of Pascal probably

making it the more respectable language for use in a university environment. However in my opinion

BASIC with its historical roots and almost universal acceptance should not be ruled out.

The content of a first course
 The discussion of the last section nicely avoids the question of how we should teach a

programming language. Should we teach a programming language in a course whose primary intent is to

teach the language with examples and applications chosen to illustrate the features of the langauge? Or do

we introduce a programming language as required in the exposition of some topic such as computer logic,

theory of computation, descriptive statistics or recreational mathematics? We shall consider these two

alternatives briefly in this section and then suggest an alternative approach for an introductory course in

computing.

Most introductions to computing appear to favour the first alternative. First programming courses are

often introductions to syntax illustrated by a series of unrelated and occasionally silly examples. An

example in one C++ text was a program that gave a prompt for the user to input a “favourite” number and

gave the response I think that [whatever number was input] is a nice number. One

Java text gave as an example a program to print either ho-ho, he-he or ha-ha which was then modified

to print yuk-yuk. A programming assignment I saw in the Department many years ago was to prepare a

 22

table of n7 and 7n for a range of values of n, an exercise without interest or application. In my opinion it is

difficult to justify the use of such material in a discipline which calls itself a science especially when it is

part of a Faculty of Science.

About twenty-five years ago I coined the phrase “The Hello Fred School of Computing Science” after

having seen too many assignments requiring the student to write a program which printed the text “Hello

Fred” or a somewhat similar message. A short time ago I happened to see a test paper in the Department

which in one question asked the student to write or to modify – I forget which – a program giving such a

message. I suppose I can take comfort in learning that Fred is alive and presumably well after I have

neglected him for so many years, but I was still disappointed in the reappearance of this example after an

absence of so many years.

The second alternative of introducing a language in the treatment of some topic has never been

popular in the Department. Some years ago Bill Adams tried this approach with Algol W, using it in a

treatment of computer architecture. Also I used it one year with APL in a course in probability and

statistics. Unfortunately none of our colleagues appeared to take any notice of our efforts. It is with such

an approach that an array language – MATLAB, APL, J, or MINITAB or Mathematica which have never

been used in the Department - is especially useful since much of the detail required in other languages

may be suppressed and the emphasis placed on the subject matter.

 We might note that Ken Iverson illustrated this approach in the small technical report APL in

Exposition. In it he briefly showed how APL could be used in the teaching of various topics such as

elementary algebra, coordinate geometry, finite differences, logic, sets, electrical circuits, and the design

of a simple computer. The last section in just fifteen pages presented the logic of a simple computer for

executing algebraic expressions, the parsing and compilation of compound expressions, and a program to

compute a sequence of Fibonacci numbers.

The introduction of a programming language in some real situation is the way we learn our mother

tongue when we are children, i.e., by using it to talk about the world around us. This world consists of our

parents, and our brothers and sisters and aunts and uncles, and kittens and puppies, and trees and flowers,

and We gradually learn words and how to combine them first into simple phrases and then into

sentences. Teaching grammar can wait until the child is in school and has some oral fluency. Also when

we study a foreign language in school the texts often introduce the language in terms of a fictional

although realistic story with the necessary vocabulary and grammar together with related exercises being

introduced as the story unfolds.

 Most introductory computing courses appear to be designed for students who are considering a

career in computing or require some knowledge of computing in their own subjects. However such an

approach ignores, however unintentionally, the very large majority of students who would be interested in

 23

some appreciation of the subject of computing as part of a liberal education without any regard for its

immediate or long-term practical usefulness. This approach to teaching a science has been termed by one

writer as treating “science as a humanity”. Some years ago I developed such a course for liberal arts

students in which I took an historical approach to computing which I summarized somewhat casually as

“beginning with ancient Egypt and ending with the current issues of Scientific American”. Some of the

topics covered were number systems of past civilizations, the Hindu-Arabic number system and methods

of performing arithmetic, logarithms, arithmetical and logical machines, Alan Turing and computability,

the development of the electronic computer, and the evolution of programming languages. The APL

language with its subordination of detail proved to be an effective means of presenting the computational

aspects of topics discussed. In my opinion the course proved to be very popular with many students

during the several years when it was given. Unfortunately in the mid 1980s it became a casualty of the

computer literacy movement and has never been resurrected.

Let us end this section on teaching and learning a language, whether a natural language or a

programming language, by mentioning Richard Scarry’s Storybook Dictionary (Paul Hamlyn, London,

1967) intended to introduce English to young children. It is a book which delights the adult reader as

much as it does the child to whom it is being read. It is a large format book in which 2500 words are

introduced by means of 1000 pictures through the adventures of such colourful characters as Ali Cat,

Dingo Dog, Gogo Goat, Hannibal Elephant and Andy Anteater. In the Introduction we are told that “He

[Presumably girls are included too.] will not be given rules. Rather, he will be shown by examples in

contexts which completely catch his interest and hold his attention. ...” If we would only teach

programming in the same way!

Acknowledgements
 I would like to thank the following persons whom I consulted during the writing of this paper: Roger

Hui for his suggestions on implementing binary arithmetic in J, Maria Stepanova for debugging the

Fortran II program and for making me recall that Watfiv was not compatible with current versions of

Fortran, Roman Fedoriw for debugging the C and Perl programs, Laura Watson for debugging my first

(and I hope last) Java program, and Catherine Descheneau who read a draft of the paper. It was a pleasure

working with these people, and their assistance is much appreciated.

References
Ackroyd, Peter. Dickens. Mandarin Paperbacks, London, 1994.

Adams, William S. LGP-30 Lectures. Unpublished lecture notes, 1960.

 24

Bergin, Thomas J. and Richard G. Gibson (ed.). History of Programming Languages-II. Addison-Wesley

Publishing Company, Reading, Mass., 1996.

Boswell, Clay S. Jr. LGP-30 Act I Compiler. Royal McBee Corporation, Port Chester, N. Y., 1959

“A brief history of programming languages,” BYTE. September 1995.

 http://www.byte.com/art/9509/sec7/art19.htm.

Chapters from the Programmers’ Handbook (Edition 2) for the Manchester Electronic Computer (Mark

II). University of Toronto, Toronto, Ontario, 1953.

Charlton, Bruce. “When science should be a humanity,” New Scientist, May 25, 1991, pp. 54 – 55.

Frankel, Stanley, "Useful applications of a magnetic-drum computer," Electrical Engineering, vol. 75,

July, 1956, pp. 654 - 659.

Frankel, Stanley P., "The logical design of a simple general purpose computer," IRE Transactions on

Electronic Computers, March, 1957, pp. 5 - 14.

Frankel, Stanley and James Cass, "LGP-30 General-Purpose Digital Computer," Instruments &

Automation, vol. 29, Feb., 1956, pp. 264 - 270.

Gotlieb, C. C. and J. P. N. Hume. High-Speed Data Processing. McGraw-Hill Book, Inc., New York,

1958.

Iverson, K. E. APL in Exposition, IBM Philadelphia Scientific Center Technical Report No. 320-3010,

1972.

Keeping, E. S. A Short History of the Department of Mathematics. Department of Mathematics,

University of Alberta, Edmonton, Alberta, 1971.

Kenney, J. F. and E. S. Keeping. Mathematics of Statistics. Part One. Third Edition. D. Van Nostrand

Company, Inc., Princeton, N. J., 1954.

Larmour, Judy. Laying Down the Lines: A History of Land Surveying in Alberta. Brindle and Glass

Publishing, Ltd., Edmonton, Alberta, 2005.

LGP-30 Programming Class Notes. Royal McBee Corporation, Port Chester, N. Y.

LGP-30 Programming Manual. Royal McBee Corporation, Port Chester, N. Y., 1957.

Pioneers in Computing. IBM Center for Advanced Studies, Toronto, Ontario, Oct. 19, 2005.

Nahin, Paul J. “Oliver Heaviside,” Scientific American, June 1990, pp. 122 – 129.

Sammet, Jean E. Programming Languages. History and Fundamentals. Prentice-Hall, Inc., Engelwood

Cliffs, N. J., 1969.

Smillie, Keith. “An historical approach to computing science,’ Historia Mathematica, vol. 6, no. 1, 1979,

pp. 63 – 66.

Smillie, Keith. Programming Notes: APL, Fortran, Algol, Pascal. Department of Computing Science,

University of Alberta, Edmonton, Alberta, 1983.

 25

Smillie, Keith. The Department of Computing Science: The First Twenty-Five Years. Technical Report

TR 91-01, Department of Computing Science, University of Alberta, Edmonton, Alberta, 1991.

Smillie, Keith. Computing Science at the University of Alberta 1957-1993. Department of Computing

Science, University of Alberta, Edmonton, Alberta, 1993.

Smillie, Keith. “From Abacus to Silion Chip,” http://www.cs.ualberta.ca/~smillie/Calculators/

 Calculators.html, 2002.

Smillie, Keith. “Kenneth E. Iverson,” IEEE Annals of the History of Computing, vol. 27, no. 4, pp. 93 –

96, 2005.

Thelen, Ed., LGP-30. http://ed-thelen.org/comp-hist/lgp-30.html, 2003.

Weik, M., A Second Survey of Domestic Electronic Digital Computing Systems, Office of Technical

Services, United States Department of Commerce, Washington, D. C., 1957.

Wexelblat, Richard L. (ed.). History of Programming Languages. Academic Press, New York, 1981.

Williams, Michael R., "UTEC and Ferut: The University of Toronto's Computation Centre," IEEE Annals

of the History of Computing, vol. 16, no. 2, 1994, pp. 4 - 12.

−−

Keith Smillie is Professor Emeritus of Computing Science at the University of Alberta, Edmonton, Alberta

T6G 2E8. His email address is smillie@cs.ualberta.ca.

 26

Appendix. Programming examples

0000 b0125 Store number
0001 c0100 of faces
0002 b0039 Restore clear
0003 c0005 instruction
0004 c0035
0005 c0101 Clear freq. accumulator
0006 b0005 Increment clear
0007 a0037 instruction
0008 h0005
0009 s0040 More accumulators
0010 t0004 to clear?
0011 b0041 Restore pick-up
0012 c0013 instruction
0013 b0126 Pick up datum
0014 c0035 Is face number
0015 s0035 positive?
0016 t0018 If +ve, continue
0017 z0000 Stop
0018 b0035 Shift face number
0019 m0038 and store
0020 c0036
0021 b0042 Set pick-up instruction
0022 a0036 for accumulator
0023 c0027
0024 b0043 Set put-away instruction
0025 a0036 for accumulator
0026 c0029
0027 b0100 Adjust total
0028 a0037 for face number
0029 c0100
0030 b0013 Increment pick-up
0031 a0037 instruction
0032 c0013 for face number
0033 u0013 Go to pick-up instruction
0034
0035 Store for number of faces
0036 Number of faces shifted
0037 z0001 Increment for instruction
0038 z0032 Increment for accumulators
0039 c0101 Restorer for clearing accumulators
0040 c0121 Test for end of clearing accumulators
0041 b0126 Restorer for pick-up instruction
0042 b0100 Restorer for accumulator pick-up
0043 c0100 Restorer for accumulator put-away

LGP-30 machine language

 27

LGP-30 ACT I Program for dice frequencies
dim freq 20
index i d
read n
1 : i
s1 0 : freq i
iter i 1 n s1
s2 read d
when d equal 0 trn s3
freq d + 1 : freq d
use s2
s3 1 : i
s4 0 print i 0 print freq i cr
iter i 1 n s4
stop

C FORTRAN II PROGRAM FOR DICE FREQUENCIES
 DIMENSION IFREQ(20)
 100 FORMAT(5X,2I5)
 READ(5,100) N
 DO 1 I=1,N
 IFREQ(I)=0
 1 CONTINUE
 4 READ(5,100) NUM
 IF(NUM) 2,2,3
 3 IFREQ(NUM)=IFREQ(NUM)+1
 GO TO 4
 2 DO 5 I=1,N
 WRITE(6,100) I,IFREQ(I)
 5 CONTINUE
 STOP

 END

C WATFIV FORTRAN PROGRAM FOR DICE FREQUENCIES
 INTEGER FREQ(20),D
 100 FORMAT(5X,2I5)
 READ(5,100) N
 DO 1 I=1,N
 FREQ(I)=0
 1 CONTINUE
 READ(5,100) D
 WHILE(D .GT. 0) DO
 FREQ(D)=FREQ(D)+1
 READ(5,100) D
 END WHILE
 DO 2 I=1,N
 WRITE(6,100) I,FREQ(I)
 2 CONTINUE
 STOP
 END

 28

100 REM FIRST BASIC PROGRAM FOR DICE FREQUENCIES
110 DIM FREQ(20)
120 DATA 4,1,4,2,3,1,1,3,3,4,2,3,4,0
130 READ N
140 FOR I = 1 TO N
150 FREQ(I) = 0
160 NEXT I
170 READ D
180 IF D = 0 THEN 210
190 FREQ(D) = FREQ(D) + 1
200 GOTO 170
210 FOR I = 1 TO N
220 PRINT I, FREQ(I)
230 NEXT I
240 STOP
250 END

REM SECOND BASIC PROGRAM FOR DICE FREQUENCIES
DIM FREQ(20)
DATA 4,1,4,2,3,1,1,3,3,4,2,3,4,0
READ N
FOR I = 1 TO N
 FREQ(I) = 0
NEXT I
READ D
WHILE D > 0
 FREQ(D) = FREQ(D) + 1
 READ D
WEND
FOR I = 1 TO N
 PRINT I, FREQ(I)
NEXT I
STOP
END

COMMENT
 ALGOL W PROGRAM FOR DICE FREQUENCIES;
BEGIN
INTEGER ARRAY FREQ(1::20);
INTEGER D,N;
READ(N);
FOR I:=1 UNTIL N DO FREQ(I):=0;
READON(D);
WHILE D > 0 DO
 BEGIN
 FREQ(D):=FREQ(D) + 1;
 READON(D);
 END;
FOR I:=1 UNTIL N DO WRITE(I,FREQ(I));
END.

 29

(* Pascal program for dice frequencies *)
program DiceFrequencies(input,output);
type a = array[1..20] of integer;
var i,d,n : integer;
 freq : a;
begin
read(n);
for i:= 1 to n do freq[i]:= 0;
read(d);
while d > 0 do
 begin
 freq[d]:= freq[d] + 1;
 read(d);
 end;
for i:= 1 to n do writeln(i,' ',freq[i]);
end.

main() /* C program for dice frequencies */
 {
 int d,i,n;
 int freq[21];
 scanf("%d",&n);
 for (i = 1; i < n; ++i)
 freq[i] = 0;
 scanf("%d",&d);
 while (d > 0) {
 ++freq[d];
 scanf("%d",&d);
 }
 for (i = 1; i <= n; ++i)
 printf(" %d %d\n",i,freq[i]);
 }

// Java program for dice frequencies
public class DiceFrequencies {
 public static void main (String arg[]) {
 int d, i;
 int freq[] = new int [21];
 int D[] = {4,1,4,2,3,1,1,3,3,4,2,3,4,0};
 int N = D[0];
 for (i = 1; i <= N; ++i)
 freq[i] = 0;
 i = 1;
 while (D[i] > 0) {
 d = D[i];
 freq[d] = ++freq[d];
 i = ++i;
 }
 for (i = 1; i <= N; ++i)
 System.out.println (i + " " + freq[i]);
 }
}

 30

Perl program for dice frequencies
@D = (4,1,4,2,3,1,1,3,3,4,2,3,4,0);
$N = shift@D ;
foreach (1..$N){
 $freq[$_] = 0;
}
$d=shift@D ;
while ($d > 0) {
 $freq[$d] +=1;
 $d=shift@D ;
}
foreach (1..$N){
 printf("%5d %5d \n", $_ , $freq[$_]);

% MATLAB program for dice frequencies
N = 4;
D = [1 4 2 3 1 1 3 3 4 2 3 4];
Face = [1:N]';
Freq = zeros(N,1);
for i = 1:N
 Freq(i) = sum(D == i);
end
disp([Face Freq])

NB. J program for dice frequencies
pos=: >:@i.
Freq=: (pos@[) ,. [: +/"1 pos@[=/]

 31

LGP-30, BASIC and J programs for book prices example

0000 b0050 Initialize
0001 h0031 minimum,
0002 c0032 maximum,
0003 c0033 sum
0004 b0027 Restore pick-up
0005 c0006 instruction
0006 b0000 Pick up price
0007 c0030
0008 s0030
0009 t0011 Is price > 0?
0010 z0000 Stop
0011 a0031
0012 t0015 Is price > minimum?
0013 b0030 Set new minimum
0014 c0031 price
0015 b0030
0016 s0032
0017 t0020 Is price < maximum?
0018 b0030 Set new maximum
0019 c0032 price
0020 b0030 Add price to
0021 a0033 total
0022 c0033
0023 b0006 Increment pick-up
0024 a0028 instruction
0025 c0006
0026 u0006 Go to pick-up instruction
0027 b0050 Restorer for pick-up instruction
0028 z0001 Increment for instruction

REM Minimum, maximum and sum
DATA 20.00,10.99,23.95,25.95,24.00,23.95,0
Total = 0
READ Price
Minimum = Price
Maximum = Price
WHILE Price > 0
 IF Price < Minimum THEN Minimum = Price
 IF Price > Maximum THEN Maximum = Price
 Total = Total + Price
 READ Price
WEND
PRINT Minimum, Maximum, Total
STOP
END

Prices=: 20.00 10.99 23.95 25.95 24.00 23.95
Summary=: (<./,>./,+/)
Summary Prices

10.99 25.95 128.84

 32

