s‘um'=(x4%\’/ﬂ - 21 "=

W= X
=i 4 Chapter IV

DECIMAL CODES

The considerations involved in choosing a representation for a decimal
digit in‘a calculator are considerably more complex than was the case with binary
digits. Wit1_1 the binary system the only significant choices were a signal or no signa.i,

a signal on one of two different lines, or a "positive" or a "neqé.tive“ signal to
represent a 0 or 1,respectively. In the decimal system a single digit may have any
one of ten diiferént values, and one of the more obvious ways of representinq'a decimal
digit is throug’;h the use of signals having the possibility of ten different amplitudes. ‘

A considerable amount of thought has been given to decimal digit represéntations of
this type, but very little progress has been made in the adaptation of multiple -amp-
litude signals to digital calculators. Consequently it has been necessary to look for
other means of digit representations.

Since most calculator components are inherently binary in nature or else
work most satisfactorily when employed in binary fashion, it has been almost universal
practice to use binary-type signals to represent the decimal digits, and there are a great
variety of wéys by which this may be accomplished. One way is to use ten separate
lineé and to place signals on a number of the lines corresponding to the digit value.

For example, signals on six of the lines would indicate the digit, 6. It is more common’
practice to specify .that only one signal at a time will be placed on any of the ten lines,
and then each of the ten lines is identifi'ed with one of the ten digits, This representa=
tion is frequently used in transmitting decimal digits from a manual keyboard to a i
calculator. Also, binary components may be used to transmit a decimal digit on a single
line if time is employed as a variablé. For example, thé duration of a signal may be
varied in ten equal steps to represent the ten decimal digits, or the signal may be

125

126

repeated a number of times equal to the value of the digit. Another method is to use .
the timing of a sirgle pulse-type signal.
Although the various "one-out-pf—ten" schemes for digit representation
which have been mentioned are relatively simple and stralghtforward, other forms
of representation frequently are found to be more desirable in the design of calculators
where factors such as speed, savings in components, and rellability are important.
1t has already been mentioned that it is possible to represent a decimal digit with a
minimum of four binary signals by using ten and ignoring six of the possible sixteen
different combinations of the four signals. But of the over 29 billion (181/81) different |
ways by which ten of the sixteen combinations can be assigned to the ten decimal
digits, only a few of the ways are useful and the problem of selecting the best way for
a given application is frequently a formidable one. The problem is further complicated ~
by the fact that the use of more than the minimum of four binary signals may provide
means for gaining Linportant advantages in some applications. A particular way of
assigning groups of four, flve, or more binary signals to the ten decimal digits is
called a decimal code, and it is the object of this chapter to point out the distinguishing
features and some of the advantages and disadvantages of several of the codes which |
may be used.

The Weighted Four-Bit Codes. Of the many possible four-bit (where a

nbit* refers to a binary digit) codes only a relatively few have the property that values,
or welghts, can be assigned to each of the four bits with the decimal digit being rep-
resented equal to the sum of the weights, All known weighted four-bit codes are listed
in Table V, although the listing is more for the record than for any practical value,

Since the codes were found by a cut-and-try search process, It cannot be guaranteed n

127

that all such codes have been found.

*5211 8421 831-2 842-3 74-2-1
*4311 531-1 *731-2 621~-4 84-2-1

0311 *831-1 441-2 721-4 72~3-1

6311 022-1 541-2 821-4 72-4-1
*4221 *822-1 *g41-2 *751-4 84-3-2

5221 ; 432-1 841-2 861-4 *87-4-2
- 6221 *632-1 *832-2 832-4
*3321 832-1 *443-2 *832-4

4321 732-1 043-2 *gb2-4

0321 *442-1 643-2 853-4

8321 542-1 843-2 843-5

7321 842-1 821-3 *753-6

4421 742-1 721-3 83-1-1

0421 842-1 751-3 63-2-1

8421 621-2 542-3 04-2-1

7421 931-2 *B842-3 84-2-1

Table V. Wei@ted Four-Rit Codes

To illustrate the meaning of the listings in Table V, three of the more

useful codes and one code involving a negative weight are displayed in detail in

Table VI, et
T T .
8421 v 2421 5421 753-8
0 0000 © 0000 0000 0000
1 0001 ¢,-774-7,4,0001 0001 1001
2 0010 . 0010 0010 : 011t
3 0011 (7t 730011 0011 0010
4 0100 0100 0100 1011
5 0101 1011 1000 0100
8 0110 1100 1001 1101
7 0111 1101 1010 1000
8 1000 1110 1011 0110
9 1001 1111 1100 1111

Table VI, Detailed Listing of Some of the
Four-Bit Welghted Codes

The 8, 4, 2, 1 code is one of the most straightforward four-bit codes
because with it each decimal digit is represented in a conventional binary system.
Therefore the code has the advantage that the relatively simple binary techniques

may be used, to some degree at least, in the arithmetic manipulations involving

128

decimal digits. A disadvantage of the code Is that the binary representations for
ten to fifteen Inclusive, have no meaning and steps must be taken to eliminate or
correct these binary combinations each time they occur in an arithmetic operation.
Another disadvantage of the code is that it is not "seli-complementing," where a
self-complementing decimal code is one where the 9's complement of each decimal
digit may be obtained by changing the 1's to O's and the O's to 1's in the coded
representation of the digit, Since a simple inversion yields the 15's complement,
it is necessary in obtaining the 9's complement to add 10 to the result obtained by
inversion or to add 8 to the digit before inversion. In the first of the two methods
a carry from the "8's" order will be obtained, but this carry is ignored, which
effectually subtracts 16 from the result.l That the two processes yield the 9's
complement may be illustrated mathematically by-the equation,
(156 -D) +10-18=15-(D+6) =9 ~ D,

where D is the decimal digit.

When the bits of the 8, 4, 2, 1 code are presented in parallel, a some-
what simpler scheme than adding and inverting may be used to generate the 9's
complement. By an examination of the code in Table VI it may be observed that the
1-bit should always be inverted in generating the 9's complement, the 2-bit is always
the same in the 9's complement as in the original digit; the 4-bit in the 9's comple-
ment is a 1 when the 2-bit or the 4-bit, but not both, in the original digit is 1; and
the 8-bit in the complement is O when 2-bit, 4-bit or the 8-bit in the original digit is

1. In Boolea.h algebra notation these relationships are

1,=1

2, =2

4, = (2@ +(2)(4)
Bo=2+4+8

129

where the subscript refers to the complement. The functional arrangement is shown
in Fig. 4-1.

Those codes in Table V which a.ré marked with an asterisk do have the
property of being self-complementing, that is, the changing of the O's to 1's and the
1's to 0's In each representation of a decimal digit will yield the 9's ;:omplement of
that digit. Note that thé sum of the weights in each self-complementing code is nine.
That a sum of nine is a requirement may be easily understood by observing that 0000
must be a representation of the decimal digit, zero, In any of the weighted codes, and
thercfore 1111 must be a representation for the decimal digit, nine.

The 4, 2, 2, 1 code, which is self-complementing, is shown in Table VI
although the first two columns have been interchanged to indicate a 2, 4, 2, 1
urrangement to correspond to common practice with this particular code. With the
2, 4, 2, 1 code the representations for the decimal digits two to seven, inclusive, are
not necessarily unique. For example, either 0011 or 1001 may be used to indicate
three, but the self-complementing feature is not effected because 1100 and 0110 are
both proper representations of six.” The self-complementing codes with only positive
weights are useful also when changing from a four-bit code to a single-line decimal
code with the true or com];lement representation of the decimal digit being indicated
by the number of pulse-type signals appearing on the line. Fig. 4-2(a) shows an
electrical circuit utilizing relay contacts, which may be used to per_form the conver-
sion and Fig. 4-2(b) shows the functional arrangement. Although the self-comple-
menting weighted codes, particularly the 2,4, 2,1 code, have been used in a few calcula-
tors, they create difficulties when attempting simple arithmetlc operations such as
addition, and their use has therefore not been widespread,

The 5, 4, 2, 1 code is included in Table VI mainly for the purpose of

130

comparison with the 2, 4, 2, 1 code, although it is not without practical application. ="
Note that the first bit in each code is 1 for the decimal digits five through nine, but
in the 5, 4, 2, 1 code the other three bits are the same for the five through nine as
for zoro through four, which is not the case in the 2, 4, 2, 1 code, The usefulness
of the 5, 4, 2, 1 code may be found in certam'multiplication and division systems
which employ only halving and doubling, The 2 and 4 factors may be obtalned by
doubling and the 5 factor may be obtained by multiplying by 10 (shifting) and halving.
The study of codes with negative weights can be a source of great
fascination; however, no -advantag-es of them deemed worth recording have as yet been

found.

Non-Weighted Four-Bit Codes. For some applications rather unusual

considerations may assume a role of magnified importance with the effect that one of ~
the non-weighted codes may be th_e best choice. For example, it may be desired to
minimize the amount of power required to store.or transmit the digits, and with an
objective such as this, a code with as few 1's as possible may be desirable. The 8,

4, 2, 1 code has a toté,l of fifteen 1's and by using, say 1010 instead of 0111 for the
digit 7, the number of 1's may be reduced to fourteen, which is minimum possible
with a 4-bit code. It so happens that the 7, 4, 2, 1 welghted code also has only
fourteen 1's, For another example, it may be desired that all decimal digits including
zero be represented by at least Qne 1 so that the absence of a signal can be detected
positively. Again, it Is possible to use a weighted code such as the 5, 3, 1, -1 code
for the purpose where zero is 0011, but if the weighted properties are not useful one
of the non-weighted codes may be better. Still another example is in the use of a

four-bit code for storage when the code used for calculations is a 5-bit code. With

6 bits there are ten different combinations with two 1's, and when the ten decimal

131
digits are represented in this manner it is possible to distinguish any digit without the
use of inverters, which is an advantage, However, only four of the five bits are
really necessary for unambigquous representation so by dropping one of the five digits,
a non-weighted four-bit code for storage is obtained. The fifth bit may be generated

when needed. One variation of the scheme is shown in Table VII. This variation is

sometimes called the 7, 4, 2, 1, O code because, except for zero, the bits have these

weights. :
2 out of 5.code code as stored

74210
0 11000. 1100
1 00011 0001
2 00101 0010
3 00110 0011
4 01001 0100
5 01010 0101
8 01100 0110
7 10001 1000
8 10010 1001
9 10100 1010

Table VII. A five-bit code reduced to a four-bit code for storage.

Although all of the ideas presented in this paragraph have been seriously proposed at
one time or a.nothér and may have actually been used in a few instances, it should be
understood that the difficulties encountered when attempting to use the codes in a
calculating device usually offset the advantages which have been mentioned.

One non-weighted code of more importance is called the excess-3 code
because it may be generaied by adding a binary 3 to each digit representation in the

conventional 8, 4, 2, 1 code. Table VIII shows the excess-3 code in detail,

132

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

OC@W-JARUxWN O

' Table VIII. Excess-3 Code

The excess-3 code has several useful properties. First of all, except for certain-
corrections which must be .a,pplied, straight binary techniques may be used in the
performance of many of the aﬂthmetic operations involving the digits. When adding
two digits the decimal carry is readily generated by using the carry from the highest
order binary digits. That the carry may be obtained in this manner may be under-
stood by observing that when two excess-3 digits are added the sum is excess-6,
which automatically eliminates the. six unwanted binarj configurations. Further
advantages of the code are that it is self-complementing and that all decimal digits
have at least one 1 in their representation so that zero and the condition of no digit
at all may be distinguished. On the other hand, the fact that the excess-3 code is
not weighted frequently introduces considerable disadvantages. For example, it is
more difficult to learn and remember than the 8, 4, 2, 1 and other weighted codes.
Certain forms of arithmetic operations are more difficult with the excess=-3 codes
than with other codes including the frequently required operation of conversion
between a four-bit code and one of the various one~out-of-ten systems of representa-

tion. Also, in some calculators a redundancy bit is used for checking purposes, and

when this is done the advantage of the excess-3 code with regard to the representation -

for zero is largely nullified.

-~

133

Codes Involving Five or More Bits. One reason it might be desirable

to use five or more bits in the representation of a decimal digit in spite of t.he avalla-
bility of four-bit codes is that it may be possible to effect simplifications in the
arithmetic circuits. in some cases. The use of a five-blt code with each decimal

digit represented by two 1's in the five bits has already been mentioned as providing

an improved means for sensing the individual digits. When addition is being performed
by switching circuits, the 8, 6, 4, 2, 1 or the 5, 4, 3, 2, 1, O weighted codes offer
certain advantages. All three of these codes have been employed in calculators built
at Harvard University; however, the use of codes with more than four bits for the |
purpose of circuit simplification has not become widespread.

A secend advantage that can be gained by using five or mere bits in the
representatien of decimal digits is the ability te detect errers. In the cede invelving
two 1's out of five bits, fof example, the existence of three 1's or only one 1 in the
representation of a digit would be recognized as an error. Another code, known as
the bi uinary code, has seven bits with the welghts of 5, 0, 4, 3, 2, 1, 0. With this
code, arithmetic cperations may be performed in a moderately straightforward
manner, although whether.or not there is a net simplification when compared with the
4-bit codes is a debatable point. The main reason for the use of seven bits is the
ability to detect errors. From the detailed listing of the code in Table IX it may be
observed that one of the first two bits and one of the last four bits is 1 in the repre~-

sentation of each decimal digit.

134

5043210

0100001
0100010
0100100
0101000
0110000
1000001
1000010
1000100
1001000
1010000

CoO-OMpwnnHO

Table IX. Bijuinary Code

Error-Detecting and Error-Correcting Codes in General. In any code

composed of binary bits, if a single error in a bit combination can produce ancther
bit combination which is also in the code scheme, the error cannot, in general, be
detected. For example, in the 8, 4, 2, 1 code 0110 (decimal digit 8) may appear as
the proper representation for six, but if there were an error and it should be 0111
(decimal digit 7) or 0010 (decimal digit 2), there would be no way of detecting from
the coded representation itself that the bits were an erroneous representation of
some other digit. In order to detect the presence of a single error in the bits of a
code it 1s necessary that the code be such that at least two changes must be made in
the bits of the code when chéng"lng from the representation of one digit to the repre~
sentation of any other digit. The 9-out-of-5 code shown in Table VII is an example
of a code satisfying this requirement. To change from the representation of
decimal 3 to decimal 8, for example, it is necessary to change both the first and the
third bits of the code. The changing of any me of the bits in any of the code com-
binations will result in a combination which can be recognized as an error, and the
code 1s therefore known as "error-detecting.” However, the detection of an error

does not mean that it can be corrected. For example, the bit combination, 11010,

135

would be recognized as an error because there are three instead of only two 1's, but
there would be no way of knowing from the code itself which of the three 1's should

be a 0. - The code is therefore not "error~-correcting.” For similar reasons the

bl ulnary code in Table IX is error-detecting but not "error-correcting." If two or
more errors occur Simultaneously with either of the error-detecting codes which have
been mentioned, the errors may pass undetected because the result of the errors may
be the production of a bit combination which is a proper representation of one of the
digits. ’

To be error-correcting, a code must be such that at least three changes in
the bit combination must be made when changing from the representation of one digit
to the representation of any other digit. With a code meeting this requirement an .
error will produce a bit combination which can be recognized to contain an error, as
before, but further, the individual bit in error can be determined. The finding and
correcting of the incorrect bit can be accomplished through changing the bits one at
a time and observing when a bit combination is obtained that is a correct representation
of one of the digits. When two errors occur simultaneousiy the resulting bit combina-
tion will be recognized as not corresponding to any digit, but the changing of one bit
may produce a bit combination which corresponds to one of the digits, but not the de-
sired digit. Thereforé, the error-correcting code will fail with the occurrence of two
errors in the representation of a given digit.

By using a code requiring four changes in the bits when changing from the
representation of one digit to the representation of any c;ther digit, "double-error-
detecting® properties may be obtained. With a code such as this, two simultaneous
errors will produce a bit combination which not only may be recognized as not corres-

ponding to any digit, but also may not be changed to any digit-representing combination

136

by the change of any one bit. Therefore, the code is capable of producing an
indication that two errors have occurred in a given digit representation, and the
ability to correct a single error is not lost. However, it is still not possible to
correct two simultaneous errors because the alteration of two bits can yield a bit
combination corresponding to one of the dicjits but not necessarily the desired one.
Also, the occurrence of three or more simultaneous errors may cause a failure in
the error detecting and cofrecting écheme.

"Double-error-correcting," and "triple-error-detecting,"” and more
powerful schemes may be devised through the use of codes requiring still more
changes in the changing of the representations of the various digits although the
number of bits required for the code soon reaches an impractical value. For the
error-detecting, error-correcting, and double-error-detecting codes a minimum
of five, seven, and eight bits, respectively, are nelce-ssary.

While the concepts presented in fhis section are of interest in the
understanding of the nature of error-detecting and érror-correcting codes, these
concepts have not been found to be of much value in the devising of useful codes. The
concept of redundancy, which'is discussed in the next section, appears to be a more
useful tool for the development of practical codes for the detection and correction of
errors.

Redundancy Checks. Among the more obvious ways of checking for

errors in digit transmission is the transmission of each digit twice. If therelsa
discrepancy in the two transmissions, it may be concluded that an error has occurred.
By transmitting the digit three times it is possible not only to detect the error but
also to correct it because two of the three transmissions should be the same, unless

two or more errors have occurred, in which case the method falls. More powerful

137

checks may be secured through additional transmissions and comparisons for. e
digit but the increased complexity which would be required in the equipment causes
the scheme to be unattractive.

The above method of checking involves the use of redundant information.
Since the purpose of the redundant information is only to check and correct errors
in the original information, it is possible to use less redundant information than is
necessary for the complete duplication of the transmissions. For example, a
coded decimal digit is representsd by a set of signals indicating a certain configura-
tion of 0's and 1's, and the configuration has elementary properties which will be |
changed in the presence of an error. Therefore, in order to check for an error it
is sufficient to use one of these elementary properties for the redundant information.
The number of 1's is one such property that may be used, but a simpler property
and one that is well adapted to the binary nature of the signals which are usually
employed is the fact that the number of 1's is either odd or even. Then, if an
extra bit is transmitted along with the coded representation of the digit, the extra
bit may be used to indicate whether the number of 1's is odd or even and a discrep-
ancy in the indication will signify that an error has occurred. This extra bit is
redundant information because it may be derived directly from the coded digit.

In order to use redundancy bits for the correction as well as detection
of errors it is necessary to devise a system whereby discrepancies in one or more
of the odd-even checks can be 1dent1ﬁed with individual bits in the code. One
arrangement which may be used incorporates the checking of several digits into a
single operation. Each digit is provided with a check bit and also each "column"”
of bits in the several digits is provided with a check bit., If any bit in the digit

representing part of the code is in error, two of the checks will fail and the error

138,

may be located in cartesian coordinate fashion. The decimal number, 69,073 in

the 8, 4, 2, 1 code is shown with its check bits In Table X. Note that the check bit

8421 C

8 |
9 1001 1
Decimal 0 0000 1
Number 7 01110
3 0011 1
C 0100 O

Table X. Redundancy Bits for Error Correction,

is 1 whenever the number of 1's in the bits being checked is even. The opposite
convention could have been used although the digit, zero, would have no 1's in its
representation which, as has already been mentioned is sometimes undesirable, If
only one check fails, it may be assumed that the check bit itself is in error unless more
than one error has occurred. By including a check on the check bits (the bit in the
lower right-hand corner of Table X) the checking system becomes double~error -
detecting as well as single-error-correcting although the complications required to
make use of this feature become considerable.

By using three redundancy bits for each digit represented with a code of
four bits it is possible to develop a digit-by-digit error correcting code. One
variation of the method when applied to the 8, 4, 2, 1 code is to use one redundancy
bit (A) to check the 1's in the 4, 2, and 1-bits; a second redundancy bit (B) for the
8, 2, and 1-bits; and a third redundancy bit (C) for the 8, 4, and 1-bits. The pattern

and the 8, 4, 2, 1 code with its redundancy bits are shown in detail in Table X1,

N

139

8 4 2 1 A B C| 4 2 1 A B C
A A A A olo o o o 1 1 1
10 o o 1 0 0 O

B B B B 210 0o 1 0 0 0 1
3o o 1 1 1 1 O

C ¢ e C 410 1. 0 0 0 1 O
510 1 0 1 1 0 1

6 lo 1 1 0 1 0 O

710 1 1 1 0 1 1

811 0 0 0 1 0 O

gt o 0 1 0 1 1

Table XI. The 8, 4, 2, 1 Code With Error-Correcting Redundancy Blts.

From Table XI it may be observed that the location of any error may be
determined by the combination of checks which fail, If, for example, checks B and C
fail, the error must be in the 8-bit. If all three checks fall the error is in the 1-bit, or,
if only one check fails, the error is in the redundancy bit itself. The occurrence of two
errors in the representation of a single digit will cause a failure in the system although
a fourth check bit (D) for indicating the 1's in all four of the original digit positions
could be used to make the code double-error detecting. Note that the coded representa-
tion for each decimal digit differs from the representation of each of the other digits by
at least three bits, which is in line with the discussion in the preceding section.

Four redundancy bits, A, B, C, and D may be used to generate an error-
correcting code 'involvi.n§ eleven information-carrying bits by following the pattern

shown in Table XII,

1024 512 256 128 64 32 18 , 8 4 2 1 A B C D
A A A A | A A A A

B B B B ' B B B B

C C C c ! ¢ ¢ C C

D D D D D D D : D

Table XII. Pattern for an Error-Correc':ting Code Involving Eleven Information-
Carrying Bits,

140

Again, the bit in error can be ascertained by the combination of checks which fail.
For example, If checks A, B, and D fall, the 258-bit is in error. In general, n
redundancy bits may be used to form an error-correcting code involving 2 -n-1
information-carrying bits. |

In most instances, redundancy bits are useful only in the checking of the
transmission of digits. Calculations involving the digits usually must be checked by
some other means, although there are a few schemes ior calculating the new redun-
dancy bits which are necessary after arithmetic operations have been performed on
the digits.. For digits which are the results of calculations, the simple generation of '
the new redundancy bits according to the péttern in use affords no checks at all in the
ca.léulétions. |

‘Many of the ideas which have been presented on the subject of error-
detecting and error-correcting codes may be found in the text "The Design of Switch-
ing Circuits" by Keister, Ritchie and Washburn (D. Van Nostrand Co., Inc., New
York 1951). |

Tape Codes. The varioué codes used 4n punched paper tape systems
were not usually selected witﬁ any consideration being given to the employment of
the tapes in calculators, However, in many cases it has been found expedient to use
previously established pl_J.nched paper tape systems for the input and output mechanisms
of calculators. For this reason the Bell System 5-hole teletype code and the IEM
B8~hole code are preseﬁted in Tables XIII and XIV, respectively. A "1" represents
a hole and a "O" | represents no hole in the tape. In most cases, it is desirable to
convert the code to one which is more adaptable to calculations when employed in the

calculator and to use the tape codes only in the tape haixdling mechanisms,

11
10
01
10
10
10
01

01
11
11
01
00
00

01

Table XIV.

000
011
110
010
000
110
011
101
100
010
110
001
111
110
011
101

A
B
C
D
E 3
F
G
H
I 8
J
K
L
M
N
O 9
P 0

141

11
01
10
00
11
01
11
10
1C
10
00
00
01
11
11

101
010
100
001
160
111
001
111
101
001
100
010
000
111
011

NHXS<aH®R IO
(o2]] -3 W -

Space

Carriage Return
Line Feed

Shift to Letters

Shift to Fiqures

Table XIII. Bell System Teletype Tape Code

001
000
000
000
000
000
000
009
000
000

00090
111920
11000
10000
01000
10010
01010
00010
00100
01110

OCW~-IOo MmO

IBM 8-Hole Code for Decimal Digits (Alphabetic and

Speclal Characters and Various Machine Operations
are Included in the Code, but Are Not Presented Here.)

OR AND ‘oR ‘ INV

AND

¥ S ¥4 Yec Y

Fig. 4-1. Functional arrangement for generating the 9's
complement with the 8,4,2,1 code,

‘. True
2 Pulses—p— S————
o 4
Comp.
4 Pulses ._L,
(a) Relay
e Circuit
2 Pulsgg ,.:.—
2 Pulses i o
-)-ANp 1 Pulsg__“f_,
2 PR

o
-—‘-:EE l
4 PulsesﬁA s

> —»1) | "
4_'_A~D L;? R T ND
2 AN '
—_AND
2 Pulseaq'—’

OR

f‘jl
\

- - i
E—F] R , COmpT'F_A_N_d-‘
D

1 Pulse

(b) Functional Arrangement

(]
AND
]

Fig. 4-2. Conversion from parallel 4-bit code to a series of pulses
on a line.

