TN

2

CHAPTER 12

PROGRAMMING

The methods used for programming a calculator so that it will proceed through

the desired sequences of operations depend greatly on the way in which the calculator
has been organized. In particular, programming methods are quite different for
externally programmed, plugged-program, and stored-program machines. While
interesting and important techniques have been worked out for certain externally.
programmed and plugged- rogram machines, the outstanding advances in program-
ming methods have been made in connection with calculators of the stored-program
variety. For this reason, the term, '"programming, " frequently implies that the
program is stored. Further, it is generally assumed that with a stored program
the calculator will be able to perform arithmetic and other operations on instruc-
tions in the program as well as on items of data, although a few stored-program
machines have been built where the program and data have been kept separate.

In this chapter, the subject will be confined to stored-program machines that store
instructions and data interchangeably. ' -

For each stored-program calculator there is a list of instructions that the
calculator is capable of executing. When preparing a program to solve any given
problem, the programmer must be familiar in some detail with the steps the cal-
culator will take when following each instruction in the list. While the instruction
lists of most calculators contain certain basic instructions such as add, multiply,
shift, and others, the details in the steps taken to execute the instructions can
vary considerably from one machine to the next. Also, there are many miscellan-
eous instructions which may or may not be incorporated into any given machine.
Because of the extensive variations which may be found in the instruction lists,
the program used to solve a given problem on one machine may seem to bear little
resemblance to the program used to solve the same problem on another machine.
However, the same principles of programming can be applied to practically all
calculator organizations where the instructions are stored mterchangeably with
the data. These principles will be explained and illustrated through the use of
a "specimen” machine. The instructions in the instruction list for the specimen
machine have been chosen mainly for their usefulness in illustrative programs,
but at the same time there has been an attempt to make the list realistic.

Instruction List for the '"Specimen'" Machine. A 5-digit, single-address,
decimal, organization has been chosen for the "specimen" machine. Each word
will consist of five decimal digits with sign, and any word may represent either
an item of data or an instruction. When a word is used to represent an instruction,
the first two digits will serve as a code to indicate the operation to be performed,
and the last three digits will represent the address; the sign will not be used in the
case of an instruction. Normally, the calculator will start by executing the in-
gtruction found at address 000 and will continue by executing instructions found at
sequentially numbered addresses except when a jump-type of instruction is en-
countered. Besides the one thousand storage locations (designated by addresses
000 through 999) in the main storage unit, there will be one other storage register,
called the accumulator, which will enter into the various operations as

- 320 -

described in the instruction list. A knowledge of the material in the previous chap-
ter, which explains how a calculator can be made to proceed through a sequence of
instructions, should be helpful but not necessary.

Instruction

STOP

RESET AND ADD

ADD

SUBTRACT

MULTIPLY

DIVIDE

SHIFT RIGHT

SHIFT LEFT

STORE

Code

00

01

02

03

04

05

06

07

08

Description

The calculator stops regardless of the digits in the
address part of the instruction. '

The accumulator is reset to zero, and the number at
the indicated address is then placed in the accumu-
lator.

The number at the indicated address is added to
the number in the accumulator, and the sum is
left in the accumulator.

The number at the indicated address is subtracted
from the number in the accumulator, and the dif -
ference is left in the accumulator.

The number at the indicated address is multiplied
by the number in the accumulator, and the product
is left in the accumulator. (This instruction is
somewhat irregular in that products of more than
five digits will not be possible.)

.The number in the accumulator is divided by the

number at the indicated address. The quotient is
left in the accumulator, and the remainder is lost.

The number in the accumulator is shifted to the
right a number of places indicated by the number in
the address part of the instruction. Digits shifted
to the right from the units position are lost.

The number in the accumulator is shifted to the
left a number of places indicated by the number

in the address part of the instruction. Digits
shifted to the left from the tens thousands position
are lost, ;

The number in the accumulator ie placed in the
storage location indicated by the address part

of the instruction. The previous contents of this
storage location are lost; the number in the ac-
cumulator is unchanged.

- 321 -

Instruction Code Description

STORE ADDRESS 09 Same as STORE except that the number in the ac-
cumulator is assumed to be an instruction, and only
the three digits corresponding tothe address part of
the word are sent to storage. The digits correspond-
ing to the code in both the accumulator and address
location are uneffected.

JUMP 10 The next instruction is taken from the address indi-
cated by the address part of this instruction instead
of the next sequentially numbered address position.

JUMP IF MINUS 11 Same as JUMP if the number in the accumulator at
the time is negative (zero is assumed to be positive);
otherwise, the next instruction is taken from the
next sequentially numbered address position.

READ 12 One word from the input mechanism is placed in
storage at the indicated address. The previous
number at this address is lost.

PRINT 13 The word at the storage location indicated by the
' address is recorded by the output mechanism.
The number in storage remains unchanged.

Basic Programming Technique. To illustrate the basic procedure which is
used to cause a calculator to proceed through a sequence of operations, the instruc-
tions required for the "specimen'' calculator to calculate xy+ z2 and print the result
will be shown. Assume that means have been provided for placing the program and
the data in the main storage unit of the calculator. The first instruction will appear
at the storage location designated by address 000, and the other instructions are
placed in the storage locations designated by successively higher numbered addresses.
The data, x, y, and z, may be stored at any convenient addresses not needed for in-
structions; in this example, locations 090, 010, and 011 will be used. Recall that
when a storage location is used for storing an instruction, the sign is not used, the
first two digits represent the operation in coded form, and the last three digits
indicate the address part of the instruction. All five digits with sign are used as
one number when storing an item of data.

Address Contents of Address Remarks
— T ST B
— —\
000 RESET AND ADD 009 Places x in the accumulator.
o1l MULTIPLY : 010 Forms xy in the accumulator.
002 STORE 012 Places xy at address {(location) 012

for temporary storage.

- 322 -

Address Contents of Address Remarks

r i —

003 RESET AND ADD 011 Places z in the accumulator. e

004 MULTIPLY 011 Forms z% in the accumulator.

005 ADD 012 Forms xy + z2 in the accumulator,

006 STORE 012 Places xv + z% at address 012 for
temporary storage. (The previous
contents of 012 are lost.)

007 PRINT 012 The number representing xy+ z
is printed.

008 STOP - Calculator stops. The address
part of this instruction is of no
consequence.

009 x

010 v

011 %

012 Reserved for temporary storage. ™

In the above program the purpose and function of each instruction is ex-
plained through the comments in the "remarks" column. Several different vari-
ations in the program may be worked out. One minor variation is that location
012 need not be reserved as a place for the temporary storage of intermediate
results. Location 009, for example, would serve this purpose just as well,
because after the first instruction x does not enter into the problem again so
that location 009 is no longer needed for its storage.

Note the desirability of stopping the calculator on step 008. If the cal-
culator is not stopped, it will automatically proceed to interpret the items of
data as instructions. Since the digits of x, vy, and z could represent any of the
instructions, all manner of unpredictable and unwanted operations might result.

Elementary Logical Program. Inthe example of the previous section,
the calculator proceeds uniformly through sequentially numbered address loca-
tions to obtain its instructions. In many problems it is necessary or desirable
to alter the sequence of operations in accordance with the data. A simple il-
lustration of a problem of this type is the finding of the largest of the three
numbers, x, y, and z, and printing the result. Such a problem is more a prob-
lem of logic than a problem of arithmetic, although certain arithmetic operations —~
are employed in its solution. When the calculator compares two numbers (by :
subtracting one from the other) JUMP instructions are used to cause one se-

- 323 -

quence of instructions or another to be followed 1n accordance with which of the
two numbers was the larger. The finding of a program which employs as few
instructions as possible is an intriguing puzzle; a program using one or two less
instructions than certain ""obvious' programs will be explained. As before, the
instructions will be found in consecutive address locations, but in this case the
calculator will not necessarily follow them i1n sequence because of the JUMP
instructions. The locations, 013, 014, and 015, wall be used for storing x, v,
and z, respectively, and location 016 will be used for temporary storage.

Address Contents of Address Remarks
—— o~
000 RESET AND ADD 013 Places x in the accumulator .
001 SUBTRACT 014 Subtracts y from x.
002 JUMP IF MINUS 005 Calcul‘.a.tor takes next instruction

from address (location) 005 if
y > x; otherwise, it proceeds to

003.
003 RESET AND ADD 013 Places » i1n the accumulator again.
004 JUMP 006 Causes calculator to take next in-

struction from 006.
005 RESET AND ADD 014 Places v in the accumulator.

006 STORE 016 Note that the calculator will arrive
at this step from 005 when y > x,
but from step 004 when y ¢ x with
the result that the accumulator con-
tains the larger of x and y. Thas
number 1s stored in 016.

007 SUBTRACT 015 Subtracts z from the larger of x and y.

008 JUMP IF MINUS 011 If z is largest, next step is taken from
0li; otherwise, from 009.

009 PRINT 016 The larger of x and y {which is now
known to be the largest of the three)
18 printed.

010 JUMP 012 Causes calculator to take next instruc-
tion from 012.

011 PRINT 015 Causes z to be printed. The calculator
arrives at this step only when z is
largest.

012 STOP - Calculator stogs

- 324 -

Address Contents of Address Remarks

013 x
014 ”
015 z
016 [] Reserved for temporary storage.

Again, several variations in the program are possible. For example, a
STOP instruction instead of a JUMP instruction could have been placed in location
010. With this change, the calculator would stop on step 010 or 012 depending on
the relative sizes of x, y, and z. In this elementary example the change would be
trivial, but in cases where a program of this type is a part of a larger program,
the termination of the part ia more likely to be of consequence.

Program Loops. In many problems of a highly repetitive nature, a pro-
gram prepared in a "straightforward' manner would consume an unduly large
number of instructions. Through the use of JUMP instructions it is possible to
prepare a relatively short program (program 'loop') through which the calculator
will proceed over and over again the desired number of times. The loop may com-
prise substantially the entire program, but in most practical examplgs a loop
would pertain to only a small portion of it. Any one program may contain many
loops which may interlock one another in a complex manner. As a simple ex-
ample of a loop, a program for preparing a list of the squares of the intergers
from 1 through 125 will be presented.

Address Contents of Address Remarks

000 RESET AND ADD clo The number at addreas {(location)

001 ADD 011 010 is increased by I, {from

002 STORE 010 +00000 o0 +00001 the first time
through the loop).

003 MULTIPLY 010 The number (+00001 the first

004 STORE 013 time) is squared and printed.

005 PRINT 013

006 RESET AND ADD 010 The quantity, +00125, is subtracted

007 SUBTRACT 012 from the number with the result

008 JUMP IF MINUS 000 that the program will be repeated

009 STOP cns until the number is increased to
+00125.

010 [+00000]

011 +00001

012 400125

013 [1]

- 325 -

—

i

In this program, storage locations 010, Ol1, and 012 were used for the
storage of constants which were net data in the usual sensge of the word. The
brackets around the number in 010 signify that this particular quantity is
changed during the course of the calculations. Note that in this example it was
not necessary to store all of the numbers from 1 through 125 as data; 1nstead,
it was possible to generate them by means of the program.

Modification of Instructions. As has been mentioned, one of the out-
standing features of most stored-program calculators is their ability 1o modify
an instruction {particularly the address part of an inst ruction) by maens of the
same arithmetic circuits that are used for performing calculations on the data.
A frequently encountered application of this facility is the pe rforming of the
same operation on a series of numbers which are located in sequentially
numbered addresses. For example, assume that it is desired 1o accumulate
and print the sum of the squares of a series of numbers, X,, where i varies
from 1 to 100. Assume, also, that these numbers are stored in addresses, 300
through 399, inclusive. One program which may be used for this purpose is
shown below. Again, brackets are used to signifv quantities that will be changed
during the course cf the program.

Address Contents of Address Remarks
000 RESET AND ADD [300] These two program steps cause the
001 MULTIPLY [300] square of the specified number to be

placed in the acrumulator The farst
time through the loop the specified
number is the one found at address 300.

002 ADD 016 - Location 016 is used to store the ac-
003 STORE 016 cumulated sum of the squares.
004 RESET AND ADD 018 1a 018, a number representing the

instruction RESET AND ADD 398 is
stored, and this number is placed in
the accumulator. Recall that the code
for RESET AND ADD is 01.

005 SUBTRACT Q00 The number in 000 {which is an instruc-
006 JUMP IF MINUS 014 - tion) is subtracted. The difference will
not be minus unless the address part of
the number in 000 has been increased to

399.
007 RESET AND ADD 000 The address part of the number (instruc-
008 ADD 017 tion) in 000 18 increased by 1.
009 STORE 000
010 RESET AND ADD 001 The address part of the number (instruc-
011 ADD 017 tion) in 00} is increased by 1.
012 STORE . 001

- 326 -

Address Contents of Address
013 JUMP

014 PRINT

015 STOP

016 [+ 00000}

017 +00001

018 +01398

000

016

Remarks

The process will be repeated. Each
time through the loop the next suc-
cessive number in the series will be
squared and accumulated because of
the altered addresses of the instruc-
tions in 000 and 001.

The calculator will arrive at step 014
{from 006) only after all squares have
been formed and accumulated.

An important extension of programs of this type is in generalizing them so
that they will function properly by merely inserting one number representing the

length of the series.

One variation in the ways by which the preceding program

can be generalized will be presented. The number representing the first address
of the series (300 in this example) is placed in address 023 and¢number represent-
ing the length of the series (100 in this example) is placed in address 024. Address
024 is used as a counter; the number stored-there is reduced by 1 each time the
program loop is traversed, and when the count becomes negative, the process is

terminated.

Address Contents of Address
000 RESET AND ADD
001 ADD

002 STORE

003 RESET AND ADD
004 ADD

005 STORE

006 RESET AND ADD
007 SUBTRACT

008 STORE

009 JUMP IF MINUS
010 RESET AND ADD
011 MULTIPLY

012 ADD

013 STORE

014 RESET AND ADD
015 ADD

016 STORE

017 RESET AND ADD
018 ADD

019 STORE

023
010
010
023
011
01l

024
026
024
021

[oo0}
{oo00)

025
025

010
026
010
0lt
026
011

Remarks

The address parts of the instructions in
010 and 011 are set equal to the number in
023.

The number in the counter is reduced by 1.

The square of the appropriate number is
formed and accumulated with the sum be-
ing placed in 025.

The address parts of the instructions in 010
and 011 are increased by 1.

- 327 -

———

Address Contents of Address Remarks

020 JUMP 006 The program is repeated, except for
the first group of instructions, which
are needed only once.

021 PRINT - 025 The calculator will arrive at 021

022 STOP - {from 009) only after all 100 squares
have been formed and accumulated.

023 400300

024 [+oomo%

025 [+00000Q

026 +00001

With this particular arrangement one detail that should not be overlooked
when the program is used a second time is that the address parts of the instruc-
tions in 010 and 011 and the number in 025 should be reset to zero. In this ""specimen
machine the number in 025 would be reset to zero if the following three instructions
were inserted at the beginning of the program.

RESET AND ADD 025
SUBTRACT 025
STORE 025

The address part of 010, for example, could be reset to zero by using the SHIF T
instructions as follows.

RESET AND ADD 010

SHIFT RIGHT 003
SHIFT LEFT 003
STORE 010

The STORE ADDRESS instruction is of considerable value in programs of
the above type. A substantial reduction in the number of program steps can be
achieved, and the need for resetting to zero the address parts of the instructions
in 010 and 011 in the illustration is eliminated. The required alterations in ad-
dresses can be achieved by substituting the following five instructions in place
of the first six instructions in the illustration and by eliminating instructions 014
through 019.

000 RESET AND ADD 023 The address parts of the instructions

001 STORE ADDRESS 010 in 010 and 011 are replaced by the

002 STORE ADDRESS 011 number in 023, and that number is

003 ADD 026 increased by 1.

004 STORE 023

023 --300 The first two digits are of no consequence.

- 328 -

The JUMP instruction would be altered to include this group of instructions
in the loop, and, of course, a renumbering of all instructions would be nec-
essary.

Sub-programs. When a sequence of instructions is to be used fre-
quently, but not in the uniformly recurring manner of the previous examples,
a technique known as ''sub-programming' is advantageous. By preparing
the sequence of instructions as a sub-program it is possible to arrange the
"main" program so that the calculator will jump to the sub-program, per-
form the desired standard sequence of operations, and then return to the
main program. Actually, the summing of the squares of a series of num-
bers when considered as an integrated operation might be a good example
of a program to be made into a sub-program if this operation is required
frequently. However, another example has been chosen to illustrate sub-
programming because it is somewhat less complex, and also because some
other interesting points of programming are introduced incidentally. The
sub-program to be explained is one for calculating the square root of a
number. The calculation of the square root is required frequently in many
problems. If the sequence of instructions for extracting the square root
were inserted in the main program each time it was needed, an unduly large
number of storage locations in the calculator would be consumed. From
the standpoint of storage space it is preferable to write the square root
program once as a sub-program, and use the relatively few ingtructions
which are required to refer to it each time a square root is needed.

Before proceeding to the example itself, a useful notation relating
to addresses will be explained. Ofiten when preparing programs it is in-
convenient to specify the exact address to be used in each and every in-
struction. Instead, the notation, L{x}, which signifies the address {(location)
where x is stored whatever that address might be, may be used. With this
definition, aninstruction such as ADD L{4+00003) means that 3 should be
added to the number in the accumulator, Of course, before the program is
executed by the calculator the actual number representing the address,

a = L(x), must be inserted in the address part of the instruction by the
programmer either directly or by means of other instructions in the pro-
gram. Also, it is frequently convenient to refer to the number stored at

a given address by the notation, C{a), which means the "content" of the
address (location). If x is stored in a, C{a) - x. To appreciate more fully
the meaning of the notation, observe that the equations,

L{c(a) -a
c [Lx)] ==

follow directly from the definitions.

- 329 -

For calculating the square root, the iterative formula,

brg i = M20k4 Z)
bk

will be used with400317 (the largest possible square root in a five-digit ma-
chine) as the first approximation, bgy. Successive approximations will de-
crease monotonically toward the desired value, The constants, +00317 and
400005, may be stored as appendages to the sub-program, or they may be at
some other known storage locations. Since the square root is to be calculated
by an iterative procesé, the sub-routine will contain a loop, and this loop
will be traversed repeatedly until byy) = by. Assume for purposes of il-
lustration that the first instruction of the sub-program is at address 350.

The number, x, for which the square root is desired, is at address 363

and the by are stored at 364

Address Contents of Address Remarks

350 RESET AND ADD L{+00317) The number for bo is placed in
the accumulator,

351 STORE 364 The approximation, by (bg the
first time through the loop) is
placed in 364.

352 RESET AND ADD 363 The quantity, byx+x/by, is formed
353 DIVIDE 364 in the accumulator.

354 ADD 364

355 MULTIPLY L(+00005) A division by 2 with a rounded
356 ADD L(+00005) quotient is effected by multiply-
357 SHIFT RIGHT 001 ing by 5, adding 5 in the units

position, and dividing oy 10
(shifting right). The accumu-
lator now contains by -

358 SUBTRACT 364 If by, € by, the loop, starting
359 JUMP IF MINUS 361 with instruction at 351, is to be
- repeated. Instruction at 361 is
needed to restore the contents of
the accumulator to bk+ 1-

360 JUMP % g Sub-program returns to main
program.

- 330 -

Address Contents of Address Remarks

361 ADD 364 See remarks above.
362 JUMP 351

363 x

364 bk

In order for the main program to be able to use a sub-program, two im-
portant conditions must be satisfied. Any parameters of the sub-pregram,
such as x in this example, must be placed where the sub-program can find
them, and the proper address must be placed in the JUMP instruction which
causes the return to the main program. The instructions which provide for
the entry into a sub-program and the return from it are commonly referred
to as the "linkage.! In particular, the JUMP instruction which causes the
return from the sub-program to the main program {the one at address 360 in
this example) is called the *link' instruction. As an example of the use of
the sub-program, assume that the main program has arrived at a step where
the next instruction is to be taken from address 100, and it is desired to cal-
‘culate the square root of number in address 750. The square root sub-program
may be utilized by the following instructions in the main program.

Address Contents of Address Remarks

100 RESET AND ADD 750 C(750) is placed at 363, where
101 STORE 363 the sub-program can find it.

102 RESET AND ADD 105 The number representing the link
103 STORE 360 instruction is obtained from 105

and is placed at the appropriate
address in the sub-program.

104 JUMP 350 Calculator jumps to the sub-
program.

105 JUMP 106 See above remarks.

106 Continuation of The sub-program returns the

. main program calculator to this step. The
square root of C{750) is now at
364.

With above method of linkage, all steps in the placing of the link are
accomplished by the main program, and new instructions for this purpose

= 331 -

arc required each time the sub-program is used. By making use of the facility
that th. operation part as well as the address part of an instruction can be
modified by the program it is possible to employ two less instructions in the
main program for each entry into the sub-program at the expense of two in-
structions at the beginning of the sub-program and one special constant.

When a sub-program is used many times in one program, a considerable
saving in storage space can be achieved in this way.

Address Contents of Address Remarks
100 RESET AND ADD 750 These two instructions are the
101 STORE 363 same as before.
102 RESET AND ADD 102 The number, 01102, is placed in
103 JUMP 348 the accumulator. The next instruc-
tion is taken from 348, which is
the new beginning of the sub-program.
104 Continuation of The sub-program returns the cal-
main program culator to this step.
348 ADD L{09002) The sum, 011024 09002 = 10104,
349 STORE 360 which equivalent to JUMP 104, is
formed in the accumulator and
then placed in 360 as the link
instruction.
350 The main body of the square root
sub-program is the same as before.
364

By using the STORE ADDRESS instruction the linkage can be made
equally conservative of storage space and possibly somewhat more straight-
forward. In this example different addresses will be used for the linkage
instructions in the main program to emphasize that the link instruction in
2 sub-program must provide for return to the "next consecutive' step in
the main program regardless of the location of the instruction that caused
the jump to the sub-program. Assume that the calculator has arrived at
step 620 and that the square root of the number at address 506 is desired.

- 332 -

Address Contents of Address Remarks

620 RESET AND ADD 506 These two instructions are the
621 STORE 363 same in principle as befere.

622 RESET AND ADD 622 The number, xx622, (the first two
623 JUMP 348 digits are irrelevant in this case)

is placed in the accumulator, and
next instruction is taken from 348.

624 Continuation of The sub-program returns the
main program, calculator to this step.

348 ADD L{00002} The sum, xx622+00002 - xx624

349 STORE ADDRESS 360 is formed in the accumulator.

The address part of this number
is placed in 360, which already
contains the code for JUMP in the
operation part,

350
The main body of the square root sub-
program is the same as before.

364

In all of the linkage examples which have been cited the same method
was used for placing the parameter where the sub-program could find it.
Another frequently used method for locating the sub-program parameters
is to place them immediately after the instructions that cause the jump to
the sub-program. Then, if x is the number for which the square root is
desired, a linkage arrangement employing the STORE ADDRESS instruction
as illustrated in the next example could be used. Prior to the arrival of the
calculator at step 622, x must be placed at 624 by instructions not shown.
Note that in this case, the link must provide for a return to the main program
at a step that is 2, instead of just 1, steps beyond the JUMP instruction which
caused entry into the sub-program.

Address Contents of Address Remarks
622 RESET AND ADD 622 Same as corresponding instructions
623 JUMP 346 in previous examples except that

the first instruction of the sub-
program is now at 346.

~ 333 -

Address Contents of Address Remarks

624 x

625 Continuation of
main program.

346 ADD L{00002) The sum, --622+00002 » --624,
347 STORE ADDRESS 352 is formed in the accumulator.
The address part is placed in 352,
which contains the instruction
involving the location of x.

348 ADD L{00001) The sum, --624+00001 « - B2
349 STORE ADDRESS 360 ig formed, and the address part
is placed in the link instruction.

350 The sub-program is the same in principle as before.
Changes in details will result from the fact that
address part of the instruction in 352 will be altered

. by the program and from the fact that storage loca-

364 tion 363 will no longer be needed for the storage of x.

In some of the above examples, the signs of certain numbers which
relate to instructions have been disregarded in cases where only the magni-
tudes were of primary consequence. Actually, for the program to function
properly, the signs of these numbers must be chosen correctly. A more de-
tailed discussion of signs will be omitted because it would most likely add
confusion without aiding in the explanation of programming principles. In
many calculators special '"magnitude" instructions are provided which fa-
cilitate arithmetic operations involving only magnitudes and not signs.

Library of Sub-programs. Many sub-programs are likely to be
useful in more than one problem. The need for extracting the square root,
for example, is encountered in a wide variety of problems. Much program-
ming effort can be saved if sub-programs can be retained in a "library' of
gsome sort from which they can be "withdrawn'' and inserted in other programs
as needed. The outstanding factor to be considered in the formation of a
library arises from-the need for being able to place a sub-program at any set
of consecutive addresses in calculator storage instead of one fixed set such as
348 to 364.

- 334 -

Assume, for example, that in the preparation of the program for the
solution of some problem the square root is needed, and addresses 348
to 364 happen to have been employed for the storage of other instructions
or data. The square root sub-program can be moved to some other part of
the storage, say addres $448 to 464, by adding 100 to the address where each
instruction of the sub-program is stored and by adding 100 to the address part
of each sub-program instructian which refers to ancther part of the sub-
program. Note that in the square root sub-program the address parts of
some instructions, particularly the SHIFT instruction should be the same
regardless of where the sub-program is stored. The address parts of the
instructions involving constants should also remain unchanged if special
addresses are assigned for the storage of constants. On the other hand, if
the constants are stored as part of the sub-program, the instructions which
refer to the constants must be altered by adding 100 to the address parts.

Since the altering of a sub-program to fit it into any set of consecutive
addresses in storage is a routine job, it is possible to prepare a vpositioning
sub-program! which will make it possible for the calculator to relieve the
programmer of this work. However, one difficulty of consequence is en-
countered. The positioning sub-program must. by some means or other,
be able to distinguish which of the instructions are to have their address
parts modified and which are not. One reasonably simple means of iden-
tification which can be used in some calculators (including the example cal-
culator) is to employ the asign of the number which represents an instruction.
Previously, the signs of these numbers have been ignored because they were
not used for anything. The convention might be used that all instructions
represented by a positive number should not be altered, but all instructions
represented by a negative number should have the appropriate constant added
to their address parts. Of course, any constants in the sub-program must
then be stored as positive numbers; otherwise, the positioning sub-program
will incorrectly interpret them as instructions to be modified. Signs used
in this manner are sometimes called "tags.' Other means for making it
possible for the positioning sub-program to identify the instructions to be
modified would be to use extra storage locations to list the addresses of the
instructions to be modified. After the sub-program to be positioned has
been properly modified, the extra storage locations are no longer needed
and may be employed for other purposes. Since the details of positioning
sub-programs vary tremendously from calculator to calculator and since no
new programming principles are introduced (once the possiblity of a position-
ing program is recognized), the subject will not be carried further here.

When assembling a library of sub-programs it is important to re-
cord not only the sub-programs themselves but also as much pertinent
data as is available about each. In the example of the square root sub-
program a graph of the required time as a function of the parameter, x,
would be useful. In other cases where approximations or cumulative

- 335 -

round-off errore are involved, the accuracy of the result.as a function

_of the varioue parameters would be important. Also, sub~programs are
likely to respond in peculiar and unexpected ways when certain combina-
tions of parameters are used or when certain errors are made. The
person preparing the sub-program might be well aware of its limitations,
but unless these limitations are recorded, the full value of the sub-program
as a library iterm will not be realized. '

Interpretive Sub-programs, First Type. An important extension of
the sub-program concept is the "interpretive" sub-program. When an
interpretive sub-program is used, each step in the main program is
“"interpreted" and executed in a manner 5pec1f1ed by one of a set of auxiliary
sub-programs. Interpretive sub-programs of many different forms and
variatione have been developed; two have been selected for presentation
here, and for lack of a better designation, they are referred to as firstand
second types, respectively.

Consider the situation where all items of data are represented by com-
plex numbers of the form, x + jy, where j is the square root of minus one.
With complex numbers, the arithmetic operations are not as simple as with
real numbers. For examples, addition and multiplication in the complex
number system are represented by the following equations.

(x1 + jy1) + (x2 + jyz) = (x) + x3) + jly, + ¥5)

While it is possible to program the calculator so that it will perform all the
necessary steps for each operation in the complex system, it would be de-
sirable to relieve the programmer of this burden. The sub-programming
procedure as described previously allows some reduction in programming
effort, but it is possible to simplify program preparation much further.
Through the use of the interpretive sub-program, each instruction such as
ADD can be interpreted to mean the addition of two complex numbers, and
the jump to the appropriate sub-program is made automatically and without
any special link or other instructions being provided by the programmer
(once the interpretive sub-program has been prepared).

For some purposes, particularly in forming loops and sub-programs
which are not related to the fact that the data are in complex number form,
it will be necessary for the ADD and other instructions to be interpreted in
their normal way. To distinguish which instructions pertain to complex
numbers, the signs of the numbers representing instructions may be used
as tags. In the example to be presented, a minus sign will be used to signify
that a complex-number operation is to be performed, and a plus sign will
indicate that the instruction is to be interpreted in the usual way. Note that
the programmer must be careful if the signs are used as tags for some other
purpose such as in the positioning sub-program described in an earlier section.

- 336 -

The convention will be used that the two parts, x and y, of a complex
number will be stored in two consecutive address positiona. To specify
the location of a number it is sufficient to give the address of the real part,
and it is understood that the imaginary part is located at the next higher
numbered address. Then, to illustrate by a simple example, all the pro-
grammer needs to prepare to add two complex numbers and print the sum
are these instructions.

075 (-) RESET AND ADD 124
076 (-) ADD 151
077 (-) STORE 120
078 (-) PRINT 120
079 (+) STOP -

The real parts of the two numbers are taken from addresses 124 and 151,

and 120 is used for temporary storage of the real part of the sum. Addresses
125, 152, and 121 play analogous roles for the corresponding imaginary
parts. The main program does not start at address 000; instead, in this
example, the first instruction of the main program is found at address 075.
The calculator follows the interpretive program and not the main program

for its detailed instructions. Therefore, it ig the interpretive program
which should start at address 000.

Before describing the interpretive sub-program itself, one of the
auxiliary sub-programs will be explained. Assume that the saub-program for
adding two complex numbers is stored with its first instruction at address
500. In principle, this sub-program does the same thing as the ADD instruc-
tion for ordinary numbers; that is, the number at the specified storage loca-
tion is added to the number already in the accumulator, and the sum is left
in the accumulator. However, the accumulator built into the calculator is not
capable of holding both the real and imaginary parts of a complex number at
the same time. For this reason, two addresses, numbers 998 and 999, in
the main storage are reserved for use as a sort of "acting' accumulator.
The effect of the complex ADD sub-program, then, is to cause the addition
of the complex number at the specified location to the complex number in
998 (and 999).

Address Contents of Address Remarks
500 RESET AND ADD 003 The address of complex number
501 STORE ADDRESS 503 to be added is placed in 503.

(The interpretive sub-program
will have placed this address in

003.)
502 RESET AND ADD 998 The real parts are added, andthe
503 ADD [1 sum is placed in 998.
504 STORE 998
505 RESET AND ADD 503 The address of the imaginary
506 ADD L{+00001) part of the complex number to
507 STORE ADDRESS 509 be added is formed byadding 1 to

the address of the real part. The
result is stored in 509.

- 337 -

Address Contents of Address

508 RESET AND- ADD 999
509 ADD f 1
510 STORE 999
511 JUMP 009

Remarks

The sum of the imaginary parts
is formed and placed in 999.

The calculator takes its next
instruction from 009, whichis
in the interpretive sub-program.

An analogous sub-program will be needed for each type of instruction which
can pertain to complex numbers. Besides the arithmetic operations, it is
desirable to be able to interpret instructions such as STORE, PRINT, and
SHIFT, as operations to be performed on complex numbers. The instruction,
STOP, presumably has the same eifect regardless of the type of number
under consideration and may therefore be treated as an ordinary instruction

always.

The interpretive sub-program serves the function of examining each in-
struction in the main program and causing a jump to the proper auxiliary sub-
program whenever a complex number operation is involved. When the instruc-
tion is to be executed in the ordinary way, as indicated by a plus sign, the
interpretive sub-program must provide for the appropriate calculator action.
For interpretive sub-program to start properly, the address of the first in-
struction in the main program is placed in the address part of instruction at
000. The interpretive sub-program is as follows.

Address Contents of Address

000 RESET AND ADD (075}
001 STORE 003
002 ~ _JUMP IF MINUS 005
003 []
004 JUMP 009
005 SHIFT RIGHT 003
006 ADD L#00012)
007 STORE ADDRESS 008
008 JUMP []

- 338 -

Remarks

The number representing the
instruction to be interpreted
(the first one of which is at
075 in this example) is placed
in 003.

1f the instruction is accompanied
by a plus sign, the calculator

arrives at 003 and executes it in
normal fashion and then jumps to
009. Otherwise, it jumps to 005.

The two digits representing the
operation code are shifted to the
right-hand end of the accumulator,
and 12 is added to the result.

The number representing the
operation code, increased by 12,
is used ae the address to which
the calculator jumps from step
008.

Address Contents of Address Remarks

009 RESET AND ADD 000 These four instructions have the
010 ADD L{+00001) effect of increasing the address
011 STORE . 000 part of the instruction at 000 by
012 JUMP 000 1 and then causing a jump to 000

for the interpretation of the next
instruction in the main program.
Auxiliary sub-programs provide
for a return to 009.

013 JUMP L {r and a) The calculator arrives at one of
014 JUMP 500 these JUMP instructions from

015 JUMP L (sub.) 008, and from here goes to the

016 JUMP L (mult.) appropriate auxiliary sub-program.

; (Recall that the code for ADD is
02; the jump to 500 is made from
014 since 02 + 12 = 14.)

Observe that when the desired sequence of operations is accomplished
through the medium of an interpretive sub-program, the calculator never
does arrive at step 075 or any other step in the main program. Instead, the
instructions of the main program are executed by transferring them to the
accumulator and address 003 for interpretation. As a result of this situation,
instructions of the JUMP type in the main program require further explana-
tion. If a JUMP instruction in the main program is interpreted in the ordinary
way (that is, if it is accompanied by a plus sign), the calculator will jump to
the specified address, which could be at any point in storage. In particular,
it could be at a location such that the calculator would leave the interpretive
sub-program altogether. For some applications this effect would be highly
useful. However, if it is desired that the JUMP instruction cause a jump to
some other step in the main program while keeping the interpretive sub-
program in effect, the JUMP must be accompanied by a minus sign. An
auxiliary sub-program for JUMP is needed to make the required alterations
in the interpretive sub-program. It is necessary that the address part of
the instruction stored at 000 be changed to the address of the instruction
which is to be interpreted after the jump; this alteration takes the place of
increasing by 1 the address part of the instruction at 000. The following
three instructions, arbitrarily stored at 580 to 582, may be used for auxiliary
sub-program for JUMP.

Address Contents of Address Remarks

580 RESET AND ADD 003 The address part of the JUMP
581 STORE ADDRESS 000 instruction from the main pro-
582 JUMP 000 gram (which was placed in 003

by the interpretive sub-program)
is placed in 000. Return is made
to 000 in this case, instead of
009, because it is not necessary
to increase the address by 1.

~ 339 -

The auxiliary sub-program for JUMP IF MINUS is slightly more involved,
but it follows the same principles. Here, the "IF MINUS" applies to the
complex number stored in the "acting" accumulator. The '"sign" of the
complex number may be taken from either the real or the imaginary part
by using the sign of the number stored in 998 or 999, respectively.

The same interpretive sub-program may be used for all problems
where the data are represented by complex numbers. After it has been
prepared for one problem, the detailed procedure by which it functions
need no longer be of concern to the programmer. However,; the program-
mer must keep in mind the addresses in storage which are consumed by
the interpretive sub-program and all of its auxiliary sub-programs, because
these addresses will not be available for use in the main program.

Other categories of problems to which interpretive sub-programs of
this type can be applied are multiple-accuracy calculations (that is, where
each number is so long that two or more locations are required for its
storage), floating-point calculations, matrices, and multi-dimensional
vectors.

Interpretive Sub-program, Second Type. The second type of interpretive
sub-program which will be described is similar in basic principles to the
first, but it is much more general in its applications. Instead of merely inter -
preting each existing kind of operation or instruction in some special way it
becomes possible to create (in effect) any number of new operations whichare
not built into the machine.

To illustrate how new operations can be created by means of an inter-
pretive sub-program, a simplified example has been worked out for the
"gpecimen'' machine. It should be understood that almost any practical inter-
pretive sub-program for any real machine would probably differ vastly from
the example, but the important concepts can be found in this simplified version.
In the organization of the "specimen’ machine, the first two digits of each
word were used as a code to indicate the various instructions the machine is
capable of executing. With two digits, one hundred different instructions can
be represented, but only the codes from 00 to 13 were actually used. By using
interpretive sub-programming techniques these same two code digits can be
made to represent any one hundred instructions the programmer desires except
that the required auxiliary sub-programs must not be so elaborate that the
storage capacity of the machine is exceeded. Some of the selected instructions
may be substantially the same as the '"built-in" instructions, but in the general
case there is no relationship between the list of instructions which are formed
by programming and the list of '"built-in'" instructions which was given at the
beginning of this chapter.

Suppose for example that the extraction of the square root is a frequently
encountered operation and that it is desired to form a special instruction for it.
The code, 30, might be selected for the square root instruction so that the
number, 30721, will have the meaning: ""extract the square root of the number
found in address position 721 and leave the result in the accumulator.”

- 340 -

As in the original examples, the sign of a number has no significance when the
number is used to represent an instruction. Also, it will be assumed that
ordinary numbers (not complex) are involved, although complex numbers or other
special situations can be handted easily with appropriate auxiliary sub-programs
and minor modifications in the interpretive sub-program. As in the interpretive
gsub-programs of the first type, the calculator never arrives at a program step
which contains an instruction of the main program. Instead, each instruction in
the main program is "interpreted" in accordance with the details of the interpre-
tive sub-program together with all of its auxilliary sub-programs. Since the
instruction counter which is built into the calculator is needed to control the pro-
gress of the machine through the interpretive and auxilliary sub-programs, an
extra storage location (009 in the example below) is used as an "acting" instruc-
tion counter to cause the interpretive sub-program to interpret the main program
instructions in the proper sequence. Further, the "accumulator' referred to in
the square root instruction or in other programmed instructions is not the ac-
cumulator built into the calculator, but is a particular storage location (say 999)
which is reserved for the purpose. In other words, an interpretive sub-program
executes an instruction of the main program in a manner roughly analogous to
the way the calculator itself executes an instruction of the interpretive sub-
program. The procedure by which an interpretive sub-program functions is
explained in the "remarks' column of the following example.

Address -~ Contents of address Remarks
000 RESET AND ADD 009 The contents of the instruction counter
001 STORE ADDRESS 004 (the address part of 009) is placed in
002 ADD L00001) 804 and then increased by l.
003 STORE 009
004 RESET AND ADD [] The instruction to be interpreted

- is placed in the accumulator.

005 SHIFT RIGHT 003 The operation part of the instruction
is caused to appear as the two lowest
order digits.

006 ADD L&00009) The code representing the operation
007 STORE ADDRESS 008 or instruction to be performed is modi-
008 JUMP [] fied by the additon of 9, and the resulting

number is used as an address to which
a jump is made,

009 -~ [~] Instruction counter. Initially, the
address of the first instruction to
be interpreted is placed here.

=34] -

——

L 4

Address Contents of Address Remarks

010 JUMP XXX Jump table. The jump to the
011 JUMP XKX appropriate auxiliary sub-
program is made from here.
The square root sub-program
is assumed to start at 600.
039 JUMP 600

/

The auxiliary sukb-programs car be substantially the same as described
in earlier sections However. certain alterations in the linkage are required.
In the case of the square root sub-program for example note that address
004 will contair the address of the instruction being interpreted, and the in-
struction being interpreted in turn contai:s the address of the number for which
the square rooct is desired. Theretore. the following sequence cf instructioas
can be placed at the beginning of the square root sub-program for the purpose
of placing the number where the sub-program can fir:d it.

Address Contents of Address Remarks
600 RESET AND ADD 004 Places the address of the in-
601 STORE ADDRESS 602 struction in 602,
602 RESET AND ADD () Piaces the address of the
60 wumber for which the square

603 STORE ADDRESS
: root is desired i 604,

604 RESET AND ADD [] Places the number where the
605 STORE XX sub -program can find it.

With the system as described the square rooi sub-program must also contain
an instruction which will cause the result to be placed in the "acting' accumu-
lator. The return iizk is simply a JUMP 000 1:8truction in this case

An outstanding extension of the isterpretive sub-program primciple arises
from the fact that ihe izstructions formed by the auxiliary sub-programs need
not be limited to the single-address variety. A conveution may be adopted
whereby a group of two or more address positions may be used for each in-
struction, and an interpretive sub-program can be prepared which will inter -
pret the instructions in any multi-address fashior. By this meaus a single -
address calculator can be made to appear 10 a programmer as a multi-address
calculator of any desired form (after the interpretive sub-program has been
worked out). Comversely, a muiti.address machine can be made to function
in single address fashion from a prcgrammer’'s viewpoint. The ability to
make one machize appear like another one has proved to be of great value
in calculator design. Before a new mache is actually built. programs for
it can be tested and corrected on some existing machine By this means, the
need for certain improvemests in the organization of the new machine can

- 342 -

frequently be discovered at an early stage of design when it is not difficult to
make changes.

Although it is probably obvious to most readers, it should be noted that
the time required to execute a given number of steps in the main program is
increased by a large factor in most cases where an interpretive sub-program
is used.

Programming when Index Registers are Available. As was explained in
the previous chapter, a calculator may be equipped with one or more index
registers. When index registers are available, the calculator is usually so
organized that certain digits in each instruction are reserved for specifying
which index register is to be used and, in some machines, for specifying the
amount (usually 1) by which the contents of the index register should be altered.
In the examples which have been presented to illustrate various programming
techniques, it may have been observed that the addition of 1 to the address
part of an instruction was a frequently encountered requirement when a program
loop of any sort was involved. In most cases the traversing of the loop was
terminated when the address reached some predetermined number. The num-
ber of instructions involved was dependent upon the detailed requirements of
the situation, but it was always at least three. With index registers; the num-
ber of instructions required for this function can be reduced to one because
built-in circuits cause the number in the specified index register to be added
to the address before execution of the instruction, and at the same time the
number is increased by 1 (or some other specified amount) in an automatic
fashion. Further, succeeding jumps in the program can be made automatically
in accordance with whether or not the number in the index register has reached
some preset value.

Besides vacilitating the preparation of program loops, index registers are
found useful in numerous miscellaneous ways. No examples will be given be-
cause, although index registers have been incorporated in many calculator de-
signs, the details and elaborations vary so greatly from machine to machine
that the value of an example worked out for a '"specimen' machine would be
severely limited.

Assembly Programs. When a single program contains hundreds or thou-
sands of instructions, its preparation contains problems which are not en-
countered to any extent in short programs where the programmer can remember
the purpose and effect of each instruction. If, during the preparation oF correc-
tion of a long program, it is necessary to alter the program by as little as in-
serting one instruction, it frequently happens that numerous changes throughout
the program must be made. Not only are the storage locations of the instruc-
tions modified, but also certain constants and the address parts of many in-
structions are usually affected.. For this reason it is extremely difficult to
prepare a long program without errors even after the logic of the program has
been worked out perfectly., For the purposes of reducing the labor and chances
for error involved in program preparation, techniques have been worked out
whereby the calculator itself is given the job of assigning storage locations to
the instructions and data and of determining the address parts of all instructions
which refer to storage locations. With these techniques the programmer writes

- 343 -

-

the program in sections with some sort of symbolic notation to describe
the storage locations and addresses. An ''assembly program'' is then used
to assemble the sections and compute the actual storage locations and ad-
dresses from the symbolic notation.

The basic idea behind at least one form of assembly program is to use
a symbolism whereby one series of numbers designates the major sections
of the program, a second series separated from the first by a dash or some
other mark designates the instructions within the section, and third series
designates instructions inserted after the initial writing of the program. A
portion of the eighth section of a program might then appear as follows.

Address Contents of Address

8-12 JUMP 8-15
8-13 RESET AND ADD 10-2
8-14 SHIFT RIGHT 002
8-15 STORE ADDRESS 8-17
8-16 ADD - 2-1
8-17 JUMP 15-3

The meaning of the instruction at 8-13, for example, is that the number
representing the second instruction in the tenth section of the program is
to be placed in the accumulator. The assembly program will assign an
actual address in storage for the symbol 8-13; also, it will assign an ad-
dress for 10-2 and place it in the address part of the instruction. The as-
sembly program will not affect the address part of the shift instruction be -
cause no storage locations are involved and no alterations are to be made.

Suppose that through an oversight or for some other reason it is de -
sired to insert a new instruction, say ADD 5-2, between instructions 8-13
and 8-14. A study of the example will reveal that it will be necessary to
alter the storage assignments of all instructions after 8-13. Also, the ad-
dress parts of some, but not all, of the instructions must be changed. How-
ever, if a symbol such as 8-13-1 is assigned as the address (location) of the
inserted instruction, there will be no need for any reshuffling of symbols by
the programmer. Since with this, system of notation each address will be re-~
presented by different symbols and no two symbols will represent the same
address, it is possible to make all changes in address assignments by means
of the assembly program.

Numerous complexities in assembly programs are encountered in certain
cases. One important case is in the assembling of a program with help of a
library of sub-programs. Some means must be provided for distinguishing
one sub-program from another; otherwise address 1-1 would mean one thing
in one sub-program and something else in another (it is assumed that the
same symbolic system is used for the sub-programs). Also, situationsarise
where it is desirable to cause particular instructions in two different sub-
programs to refer to the same address where the symbolic addresses as
stored in the library are not the same.

- 344 -

Another complexity arises when the assembly program and the program
being assembled are too extensive to fit into the storage unit of the calculator.
The procedure in this case is to divide the program into parts and assemble
one part at a time. Since the instructions in one part may refer to the ad-
dresses in another part, it is not always possible to convert the address part
of each instruction from symbolic form to an actual address on the first pass
through the machine. By using a part of the storage unit for maintaining a
file of unassigned addresses the assembly of the program can be completed
the second time it is entered into the calculator. A further requirement of
the assembly program is that it record the assembled program in forms
suitable for subsequent use by the calculator and suitable for visual reference
by the programmer.

Most practical assembly programs for real machines are themselves
long and complicated and may require literally months to prepare. The use-
fulness of an assembly program comes, of course, from the fact that; once
prepared, it can be used without alteration for the assembly of innumerable
other programs.

The "Speed-coding' System. A different approach to the problem of
simplifying the preparation of long programs is to provide by interpretive
sub-program techniques a set of instructions which are much more compre-
hensive than those built into the machirie. By this means it is possible in
many cases to eliminate all sub-programs aud certain other complicating
factors in the program as prepared by the programmer; in fact, it is noteven
necessary that the programmer understarnd sub-programming techniques at
all. Another advantage of the system is that the number of instructions which
must be written to solve a given problem can be reduced by a large factor.
The name, "speed-coding", was first applied to a system of this type which
was prepared at IBM for the 701 calculator. Other groups have worked out
analogous systems for differemnt calculators, and other names have been
chosen to describe them.

Asa in the case of an assembly program, the speed.coding interpretive
program is long and involved and requires a matter of thousands of instruc-
tions with its usefulness being derived from the fact that, once prepared, it
may be used by programmers who have no knowledge of how it works. The
programmer need be familiar only with the list of "programmed instructions"
which the speed-coding system provides. Included in the list are instructions
for square root, sine, arc tangent, exponentiais. and logarithms, all of which
would normally require sub-programs when using the "built-iu'' instructions
of the calculator. Also, several input and output instructions are included
which allow the programmer to move an entire block of information from one
place to another with only one instruction. To handle situations where it is
desirable to modify an instruction, a set of index registers (referred to as
R-quantities in this case) and an address counter are provided by the speed-
coding system. The index registers function in principle by the procedure
described previously, and by means of the address counter it is possible to
replace selected addresses with new ories or to add address increments in a
variety of manners.

- 345 -

AN

-

A further convenience included in the speed-coding system are special
instructions for the automatic checking of calculations. By placing a
START CHECK instruction at the beginning and an END CHECK instruction
at the end of the series of instructions to be checked, the calculator will be
caused to proceed through the sequence twice and to generate a check sum
each time. The calculator will then compare the two check sums and, if they
are equal, it will skip the instruction immediately following the END CHECK,
but if there is a discrepancy, that iunstruction will be executed. In the event
an error is detected, the programmer may costrol the course of action the
calculator is to follow by having placed an appropriate instruction in the
position immediately following the END CHECK instruction.

The basic ideas employed in writing a program in the speed-coding
system are substantially the same as when writing a program using ''built-in"
instructions. There are a great many differences in detail, however, be-~
cause of the considerabie differences ix the nature and quantity of the
individual instructions. Amn instruction in the speed-coding system consists
of two operations, four addresses, and a digit relatirg to the indexregisters.
One operation and three of the addresses are used for arithmetic and input-
output functions in a maruer similar to that of a three-address calculator.
The other operation together with the fourth address are used for jump, ad-
dress modification, and error checking functions, although there are many
interrelationships between the two operations. All items of data are handled
through the speed-coding system as fioating point numbers even though the
calculator is a fixed-point machine.

In spite of the relative complexity of the individual instructions in the
speed-coding system, the over-all task of preparing a program for a given
mathematical problem is made easier because many of the confusing factors
arising from sub.-programming are avoided through the interpretive process
and because many less instructions in the "mairn'' program are required.

An outstanding disadvantage of the speed-coding system is that the great
number of instructions are consumed in the interpretive process cause more
time to be required for calculations in the speed-coding system than when
the program is prepared enutirely in terms of "built-ix'" instructions.

An interesting combination of assembly program and speed-coding
concepts is the use of an assembly program to prepare address assignments
for a program written in texrms of speed -coding 1nstructions.

Tracing Programs. It seems to be almost axiomatic that a program
when first prepared will not work. Occasionally programmers are able to
write short programs that are totally free from errors, but for a long pro-
gram the places where typographical errors, unforeseen circumstances, and
mistakes in logic can arise are so numerous that the chances of getting it
right the first time are extremely small. In spite of the difficulty a human
being has in discovering errors by a mental checking process, the calculator
usually will show up errors in programming very quickly by a failure to ar-
rive at the right answer. The calculator, then, is the best tool the program-
mer has for perfecting his programs. However, the calculator will show

- 346 -

only the existence of an error; it will not indicate precisely what or where
the error is. The programmer still has the job of deducing the source of
the error from the calculator’s behavior, which may be peculiar to say the
least.

To assist the programmer in locating errors in a program, "tracing
programs'' may be used. A iracing program is basically an interpretive
program which functions in the same genera, manner as other interpretive
programs which were described by means of examples in earlier sectiomns.
When a tracing program is used, the calculator does nct execute the in-
structions of the main program direcily; instead, each imstruction is
"interpreted". The interpreting in this case accomplishes the same end
result as direct execution except that certain additional features are added.
For example, each imstructior. may be caused to be printed as it is executed
so that the programmer can have a record of what the calculator actually
does. By studying this record the path of the calculator through the main
program can be determined to see whether or not it was following the various
jump instructions as expected. The address parts of the instructions can be
observed to indicate whether or not the desired items of data entered into
the calculations as each point. Tracing programs cax also be used to obtain
a printed record of the contents of the accumulator or of other registers at
the end of each program step. With this information the progress of the cal-
culations for a sample set of parameters can be compared with the results
obtained from a desk machine in an effort to locate the mistake.

Innumerable variations can be worked out for special cases. For example,
if the programmer is interested only in knowing the sequence of program
steps that the calculator followed, the tracing program can be altered so that
it will be limited to printing information relative to jump instructions. In
other applications, calculated values will be needed only at certain intermediate
points in the program instead of at each program step. Siuce the progress of
the calculator through the main program is much slower when a tracing pro-
gram is used, it may be important from a purely time consideration to limit
the scope of the tracing functions.

Diagnostic Programs. If errors are being encountered which place the
calculator and not the program under suspicion, special programs known as
"diagnostic'' programs can freque.‘ly be used to locate the source of the
errors. A diagnostic program is to be distinguished from a test program
although the dividing line between the two is not at all well defired. A test
program is generally employed to determinc whether or not the calculator,
or some particular portion of it, is workinug properly. This purpose is ac-
complished by exercising each element in the calculator as thoroughly as
practical by means of appropriate instructions in the program and then ob-
serving to see that the proper respouse is cbtained. Since the proper
response may consist of a check sum or some cther number obtained after
a long sequence of operations, there may be rzo indication of the source of
an error in the event that*tgxiste:::fn_ce of an error is sensed. On the other hand,
diagnostic programs are generally employed after a defect is known to exist,
and the purpose is to find the defect.

= 34T =

N

The details of any specific diagnostic program would be dependent
upon the engineering details of the calculator under consideration. However,
there are a few considerations which appear to apply to nearly all calculators.
For one thing, for a diagnostic program to work, the calculator must be
functioning well enough "to get a program off the ground'; that is, the in-
structions of the program must be executed properly, and therefore certain
portions of the calculator must be in good condition. For this reason it is
difficult to prepare a program which will properly diagnose an error insome
of the important control circuits of the machine. The power supply is another
gource of errors which are difficult tec locate by means of diagnostic pro-
grams. It is usually necessary to check these parts of the calculator through
the use of oscilloscopes, voltmeters, and other test instruments.

While it would be desirable to have ore all-inclusive diagnostic program
which would indicate the cause of an error regardless of its source, it is
generally more feasible to employ a set of specialized programs each of which
pertains to a relatively small portion of the machine. Frequently whenerrors
are encountered, the approximate location of the source is known, and in this
case the appropriate diagnostic programs may be selected to aid in finding
the trouble quickly. In instances where incorrect results are being obtained
with no indication whatsoever of the cause, the specialized diagnostic pro-
grams are still of great value although it is then necessary to examine the
entire calculator in some systematic manmner such as would be used when
testing a2 new machine.

For IBM's 701, for example, a library of at least seventy different
diagnostic programs has been assembled. One of the simplest {and sur-
prisingly useful) programs is merely a blank card to be fed through the card
reader; many clues to error causes can be obtained if the card fails to feed
properly or if extraneous digits are entered intc the machine. Most of the
diagnostic programs are highly specialized and pertain to such things as
controls for a particular instruction, the instruction counter, a specific
property of the electrostatic storage unit, drum addressing circuits,; or the
printer circuits. The medium through which the programs present the re-
sults of their diagnosis to the operator is usually a stopping of the calculator
at a point where the pertinent data is readily observable in the various registers.
Instructions for interpreting the data are recorded in the library along with
the programs. Some of the diagnostic programs are capable of generating
relatively elaborate reports on the cutput printer.

- 348 -

