|
I _—
GENERAL ELECTRIC

COMPUTERS | GE-225
Programming
;' 2 Reference Manual

|
)

GE-225

PROGRAMMING
REFERENCE MANUAL

October 1963

Rev. June 1966

GENERAL @B ELECTRIC

INFORMATION SYSTEMS DIVISION

PREFACE

The GE-225 Programming Reference Manual has been prepared both as a reference manual for
programming te GE-225 information processing system and as a training aid. [t includes a brief
deseription of the major components of the system, machine language and number systems, central
processor and console typewriter operations, coniroller selector operations, programming
conventions, and an octal and alphabetical listing of General Assembly Program instructions,

The _information in this manual also applies essentially to the GE-205 and GE-~21) systems,
Bquivalent coverage for the GE-235 is included in the GE-235 Central Processor Reference
Manual, CPB-374.

This mauual is a condensed version of an earlier edition which also contained information on the
General Assembly Program and the various peripheral subsystems used with the GE-223,
Separate manuals have been published to cover these subjects, as listed below:

Subject Manual Title and Publication No.

General Assembly Progran GE-200 Series General Assembly Program II
{Publication No. CPB-1180}

400~cpm Card Reader

1000-¢pim Card Keader GE-200 Series Punched Card Subsystemi Reference

100-¢pm Card Punch Manual (Publication No. CPB-302)

300-¢cpm Card Punch

15~ & 15 41kc. Magnetic Tape GE-200 Series Maynetic Tape Subsystems Reference
Subsystems Manual {Publication No, CPB-338}

Paper Tape Reader/Punch GE-200 Series Paper Tape Subsystem Relerence

Manual {Publication No. CPB-308}

S00-Lpm On-Line High Speed GE-200 Series High Speed On-Line Printer Reference
Printer Manual (Publication No. CPBE-321}

900~Lpin Off/ On-Line High Speed GE200 Series High Speed Off-Line On-Line Printer
Printer Reference Manual (Publication No. CPB-1075)

12-Pocket Document Handler GE-225/2345 Document Handler Reference Manual
{1200-dpm) {Publication No, CPB-307)

Suggestions and criticisms relative to form, content, purpose, or use of this manual are invited.
Comments may be sent on the Document Review Sheet in the back of this manual or may be
addressed directly to Engineering Publications Standards, B-90, Computer Equipment Department,
General Electrie Company, 12430 North Black Canyon Highway, Phoenix, Arizona 85029,

@ 1963, 1964, 1366 by General Flectrice Co.

3

CONTENTS

THE GE-225 INFORMATION PROCESSING SYSTEM

- System Components
- Simultaneous Operations

MACHINE LANGUAGE

- Number Systems
*Data Words

Instruction Words

- Symbolic Programming
. Microprogramming

CENTRAL PROCESSOR ORGANIZATION

- Magnetic Core Storage
- Arithmetic and Controi Registers
- Basic Operating Cycle

CENTRAL PROCESSOR OPERATIONS

- General

- Arithmetic Instructions

~ Data Transfer Instructions

- Shift Instructions

- Internal Branch Instructions

Medification Instructions
Programming 16K Memory Systems
Programming Central Processor Operations

DIRECT INPUT-OUTPUT OPERATIONS
Control Console Operations

Console Typewriter Operations
CONTROLLER SELECTOR OPERATIONS
Controller Selector Priority

Controller Selector Instructions
Automatic Program Interrupt (API)

Page

15
15

21
23

25
25

29
29

35

39
39
40
52
62
69
72

79

83
83
88
93
93

94

~1ii-

Page

1. PROGRAMMING CONVENTIONS 99
Memory Layouts 99
Input/Output Documentation 99
Use of Symbols 105
Subroutine Usage 105
Typewriter Utilization 106
Debugeing Techniques 107
Program Documentation 109

. APPENDIXES

A. REPRESENTATION OF GE-225 CHARACTERS 113

B. OCTAL LIST OF GE-225 INSTRUCTIONS 115

C. ALPHABETIC LIST OF GE-225 INSTRUCTIONS 123

Ble-22%

-iv-

Figure

N s G D

16.
17.
18,
19.
20,

21.
22.
23.

25 .

26,
27.
28.
29.
30.

31.
32.
33.

35.

ILUUSTRATIONS

GE-225 System Components

Central Processor and Controller Buffers
GE-225 Priority Access System

Large GE-225 System Configuration
Controller Selector Priority

Binary Addition Table

Octal Addition Table

Table of Powers of 2 and 8
Octal-to-Decimal Conversion Chart
Decimal-to-0Octal Conversion Charts

Basic GE-225 Word

Table of Elemental Instructions

Bit Storage in a Ferrite Core
Representative Allocation of Memaory
GE-225 Arithmetic and Control Register

GE-225 Arithmetic Registers

GE-225 Control Registers

Basic Timing for Single Length Word Operations
GE-225 Instruction-Execution Cycle

Flowchart Showing Central Processor Operating Cycle

Two Numbers in Memory before Scaling
Incorrect Sum after Addition without Scaling
Numbers in Memory after Scaling

Using a Rounding Factor of .05

18K Memory Layout

Instruction Characteristics when Addressing 16K Memories
Rejected Parts Cost Flowchart

RPC Program - Initialization

RPC Program - DPARTS Calculations

RPC Program - EPARTS Calculations and Constants

RPC Program - OVRFLO Routine
Units Directly Accessing Memory
The Control Console Panel
Console Typewriter

Typewriter Character Set

Page

i1
13
14

16
17
18
19
20

21
27
29
30
32

51
51
51
52
5

16
80
81
81
82

82
83
84
89
89

Firure

36.
317.
34.
39.
40.

41.
42.
43.
44,
45,

BlE- 225

Sample Typewriter Coding

Assembly Program Coding for API Problem
Typical Memory Allocation

Magnetic Tape Record Layout

Magnetic Tape Record Layout Sheet

BCD Multiple Card Layout Sheet
Memory Allocation Layout Sheet
80-Column Card Layout Form
Typical Symbolic Addresses
Representative Subroutine

Subroutine Requiring a Calling Sequence
Subroutine Calling Sequence

Printer Controller Octal Memory Dump
Programmed Octal Memory Dump
Octal Correction Card

Pape

o1
98
9%
100G
101

1G2
103
104
105
105

105
108

108
109

-Vi-

1. THE GE - 225 INFORMATION PROCESSING SYSTEM

The GE-225 Information Processing System is a
medium-scale, general-purpose digital computer that
permits an integrated approach to the total infor-
mation processing needs of business, government, and
science, while providing an economical means of
processing large volumes of data at high speed.

The modular design of the GE-225 system provides
flexibility in meeting data processing requirements
for a wide range of applications. A GE-225 system
consists of reading {input} and writing {output) devices
interconnected and controlled through a centr_-al pro-
cessor, The number and types of input and cutput

devices, as well as the configuration of the cen‘tral
processor, are determined largely by the desired

applications. Input data can be from paper tape, mag-
netic tape, punched cards, and magnetically-encoded
{MICR) paper documents, OQutput canbeinthe form of
paper tape, magnetic tape, punched cards, andprinted
reports. Both alphabetic and numeric data can be
received or produced by the computer, either locally,
or over long distances from the central processor usging
peripheral data transmission equipment, such as the
DATANET-15 and its associated terminals.

The GE-225 is a solid-gtate, single-address computer
that operates under both stored program and oper-
ator control. Also, it is a buffered computer with an

input-cutput priority system that permits simultaneous
operations, such as reading, writing, and processing.

Further flexibility is provided through the ability to
cperate internally in either the binary or the decimal
maodes.

The basic programming language for the GE-225 is
provided by the General Assembly Program, It is
an automatic assembly system that permits the pro-
grammer to prepare routines in meaningful symbolic
language, rather than in the absolute machine lan-
guage, or code, of the GE-225 and then utilize the
GE-225 {and the assembly program) to assemble a
computer-ready program, Extensive clerical effort
is eliminated by using significant mnemonic codes
that generally have a one-to-one correlation to basic
machine instructions, Added flexibility is provided
because addresses can be assigned using either deci-
mal or symbolic notation, Capabilities of the General
Assembly Program also include the ability to incor-
porate the many library routines provided by General
Electric, suchas input-output and mathematical pack-
ages.

* DATANET is a registered trademark of the General Electric Company.

BlE-229

SYSTEM COMPONENTS

The GE-225 system can assume various configura-
tions, depending upon the application requirements.
Brief descriptions of system components are given
below. More detailed descriptions and information
pertaining to their use are provided in the manuals
listed in the Preface.

Central Processor

The GE-225 Central Processor provides arithmetie,
comparison, and decision circuits and automatic con-
trol facilities for the processing system. In addition,
it houses the randomly-accessed magnetic core stor-
age (or memory).

Core storage provides the main memory element for
the system, although it can be augmented by external
storage in the form of magnetic tape or disks. Both
data to be processed and the controlling instructions
are held in core storage and called forth by the con-
trol element as required. Information in storage is
retained by tiny magnetic cores, each core capable of
holding one bit (binary digit) of data. The basic unit of
storage is the word, each word consisting of 20 bits

(plus a check bit), and each word being individually
addressable. The access time associated with trans-
ferring a word into or out of memory is 18 micro-
seconds, or one word time. Core storage can consist
of 4,096, 8,192, or 16,384 locations, each of which

can contain a single-address instruction, a binary
data word, or three alphanumeric or binary-coded-
decimal (BCD) characters.

BlE-229

Control Console ~

The GE-225 Control Console, attached to the central
processor, provides manual control of operations,
visual display of the contents of appropriate registers,
program monitoring facilities for the operator, and
typed output via the console typewriter, under program
control. From the console, the operator controls the
initial loading and starting of programs and can per-
form in-process modifications based upon processing
results.

Paper Tape Reader-Punch

The GE-225 Paper Tape Reader-Punchistwomechan-
ically-independent units: a mechanism for reading
five~, six-, seven-, and eight-channel perforatedpaper

tapes at 250 or 1000 characters per second, and a
mechanism for punching five-, six-, seven-, and
eight-channel paper tapes at 110 characters per
second. Provisionsare made to accommodate all com-
mon paper tape codes.

Card Reader

Either a 400 cardper minute ora 1000 card per minute
card reader isavailable with the GE-225. Both readers
can read standard 80-column punched cards in one of
three modes: ten-row or twelve-row binary, or stan-
dard Hollerith (alphanumeric) mode. Cards are read
serially (one column at a time) in all three modes.

Either card reader canoperate simultaneously with the
central processor and other peripheral operations.
For example, cards can be read at the same time that
data is input from magnetic tape or from a 12-pocket
document handler; simultaneously, previously input
data can be processed within the central processor.

Standard cards are 7-3/8 by 3-1/4 inches and con-
sist of 80 columns along the long dimension and 12
rows along the short dimension, As cards are moved
through the card reader mechanism, all twelve row
positions of a column are simultaneously photoelec-
trically sensed, Card reader logic, whichis contained
within the central processor, permits cards to be
read on demand by the processor or continuously,

Card Punch

The card punch is an output device which punches stan-
dard 80-column cards at a rate of either 100 or 300
cards per minute, depending upon the model selected.
Cards are punched in either of three modes: ten-row
or twelve-row binary, or standard Hollerith mode,
depending upon program control.

The card punch is primarily an on-line peripheral and
receives basic control signals from the central proces-
sor. However, gang punching, or duplication of many
cards from a master card, can be performedoff-line.

As an on-line peripheral, the card punch can operate
simultaneously with the central processor and other
peripherals.

Controller Selector

The GE-225 Controller Selector serves as a common
control and data transfer point between the central
processor and the peripheral controllersfor magnetic
tape handlers, document handlers, high-speed printers,
mass random access data storage, DATANET-15
terminals, and the auxiliary arithmetic unit. The
controller selector contains eight hubs or addresses
to which eight controllers can be connected. By
priority assignments, which are determined by the
addresses, the controller selector controls access to
core storage for the attached peripheral units. This
permits simultaneous operation of as many as eight
peripherals on the controller selector, plus the card
reader and punch, for a total of 10 concurrent input/
output operations.

The logic for the controller selectoris contained within
the central processor. Access to the central processor
and memory for peripherals and their associated con-
trollers is provided by cables between the controller
selector and the controllers.

Magnetic Tape

Magnetic tape provides a fast method of transmission
of data between the central processor andbulk storage.
Millions of bits of data can be recorded on a single
reel of tape, thus providing a compact and economical
storage medium. Magnetic tape canprovide in-process
(on-line) or static (off-line) storage for immediate or
subsequent use, yet can be erased and be re-used
repeatedly.

Up to eight magnetic tape controllers canbe connected
to the controller selector; up to eight magnetic tape
handlers can be connected to each controller, providing

a maximum of 64 magnetic tape handlers for the GE-
225 system. Different. models of magnetic tape
handlers provide two data transfer rates: 15,000 and
41,700 characters per second. Data can be read or
written either in standard binary or in binary-coded-
decimal (BCD) mode. :

" The combination of a tape controller and its associated

tape handlers comprises a magnetic tape subsystem.
A subsystem of one tape controller and multiple tape
handlers permits reading or writing concurrently with
other operations. A subsystem containing twoormore
tape controllers permits reading and writing simul-
taneously with other operations.

BE-223

o el

S

i

E i i m L

High Speed Printer

The GE-225 High Speed Printer is an output unit for
applications requiring presentation of largequantities
of printed information. The printer produces alpha-
numeric output, up to 120 characters per line, 900
lines per minute. Printing format is governed by the
printer controller, which contains logic for automati-
cally editing the print line independent of the central
processor. Editing featuresinclude zero suppression,
deletion of data, and insertion of special symbols,
constants, and spaces. Printing canalsobe performed
completely off-line from the system by using magnetic
tape as an interim storage medium. Printing and
editing can proceed simultaneously with other peri-
pheral and central processor operations.

Disc Storage Unit

Disc Storage Units, each consisting of 16 vertically-
mounted rotating magnetic disks, are available for
non-sequential file processing, Each DSU has a total
capacity of 98,304 records, or over 6 million words,
This provides storage for about 19 million alpha-
numeric characters or 34 million numeric digits,

G

Fooo
P
E N T
e e
i

One or two DSU controllers can be connected to the
controller selector; up to four DSU units can be
connected to each controller, DSU reading and writ-
ing operations can proceed simultaneously with other
peripheral and central processor operations,

12-Pocket Document Handler

The 12-pocket document handler is an on-line or off-
line peripheral that reads and sorts documentsprinted
with magnetic ink in E13B font at a speed of 1200
documents per minute. The document handler can be
used off-line as a document sorter, and it is possible
to use two sorters simultaneously. The document
handler adapter (controller) permits concurrentoper-
ation with other peripherals and the central processor.
Two document handlers under the control of a single
adapter permit an input rate to the central processor
of 2400 documents per minute.

Auxiliary Arithmetic Unit (AAU)

Although the AAU is connectedto the central processor
through the controller selector (address 7), itismore
properly considered to be an extension of ’Ehe central
processor, rather than a peripheral unit. The AAU
provides increased facility for double-length word
binary arithmetic in either normalized or unnormal-
ized floating-point modes or in fixed-point mode. The
AAU canoperate concurrently withnormal centralpro-
cessor and peripheral operations.

GlE=223

DATANET-15

Transmission and reception of data between the GE-225
Central Processor and remote locations is made
possible by the DATANET-15, which can accept serial
data at speeds from 60 to 2400 bits per second. The
DATANET-15 can operate with as many as 15 remote
stations, one at a time, in addition to controlling a
paper tape reader-punch. Terminal devices include
Teletype equipment, other DATANET-15 units, or
virtually any terminal device utilizing five=-, six-,
seven=-, or eight-channel bit codes.

SIMULTANEOUS OPERATIONS

The logical design of the GE-225 permits up to eleven
simultaneous input-output operations. That is, data
can be transferred between core storage inthe central
processor and several direct and indirect peripherals
at the same time that the centralprocessoris engaged
in processing data previously readin. Suchoperations
are made feasible because of the vast differences in
data transfer rates between core storage (18 micro-
seconds per word), and peripherals, such as the 400
cpm card reader (5610 microseconds per BCD word).

Maximun
Per
Name System

CENTRAL PROCESSOR (mandatory) 1
CONTROL CONSOLE, including Console

Typewriter (mandatory) 1
DIR -QUTPUT

Paper Tape Reader-Punch 1

Card Reader, 400 cpm or High Speed 1

Card Punch, 100 or 250 cpm 1
PERIPHERAL CONTROLLERS

Controller Selector 1

Mass Random Access Data Storage

Controller 1

Magnetic Tape Controller 8

High~-Speed Printer Controller 8

DATANET-15 8

Document Handler Adapter 8

Auxiliary Arithmetic Unit 1
C R SELECTOR PE RALS

Mass Random Access Data Storage

Units 8

Magnetic Tape Handlers 64

High-Speed Printers 8

DATANET Terminals 120

12-Pocket Document Handlers 16

Figure 1. GE-225 System Components

To make optimum use of the high speed of core stor-
age, the GE-225 makes provision for time sharing ac-
cess to memory by buffering data transfers, assigning
peripheral priorities for access to memory, and
permitting simultaneous processing of two or more
unrelated programs,.

Buffers and Buffering

Buffering is a technique for providing optimum data
transfer between two components having different
data transfer rates such as core storage and the
400 cpm card reader mentioned above, Buffering
involves using a temporary storage device, or buffer,
that can be filled with data at a rate governed by the
data source component, and subsequently unloaded
into the data receiving component at a rate governed
by that component, This permits both components
to function at their optimum speeds when processing
unrelated data without the faster component being
slowed down during data transfers by the slower one,

Thus, in transfers between core storage and the 400
cpm card reader, although it takes 150,000 micro-
seconds to read all 80 card columns, core storage

BE-225

CORE STORAGE BUFFERS

Card Reader ———™| Buffer n Typewriter
Core Paper Tape
— —_ Storage Buffer Reader-Punch
Card Punch #— Buffer T

Central Processor

CONTROLLER BUFFERS

‘_,____._
Core 1

Storage |- — — — — —»]

Central Processor

Controller
Selector
44— Tape ‘J
Magnetic Control
Tape Buffer

Prinfer o

Control
Buffer |
High
Speed
Printer
To Other
Peripheral
Buffers

Fipure 2. Central Processor and Controller
Buffers

b et

is occupied in receiving the data read for only 1512
microseconds (one word time per column), The
balance of the time it takes to read the card (148,560
microseconds} can be used for other data processing,

Buffers in the GE-225 are of two types: direct [-O
buffers and controller bhuifers, as illusirated in
Figure 2. Direct I-O buffers, located within the
central processor, are for use withperipherals having
direct access to core storage, such as the card
reader and punch, the paper tape reader-punch, and
the console typewriter, Controller buffers are
located in the separate controllers for high-speed
peripherals, such as magnetic tape handlers, dise
storage units, and high-speed printers. Buffers for
these units have access to core storage indirectly
through the controller selector,

The Interrupt Principle

The interrupt principle takes advantage of the signi-
ficant difference in operating speeds of the central
processor and the peripherals by permitting the normal
‘fetch instruction, execute, fetch instruction, execute,
fetch...etc.,” sequence of the central processor to be
interrupted for data transfers.

Two kinds of interrupt are provided in the GE-225.
One, related to normal program processing, is called
priority interrupt; the other, related to multi-program
processing, is called automatic program interrupt.

PRIORITY INTERRUPT

In the GE-225, buffering permits two or more oper-
ations in a program to be performed simultaneously;
for example, cardsortape canbe read while computing
oceurs in the central processor and, atthe same time,
cards or tape can be written. Inthe example, compu-
tation and access to core storage by the central pro-
cessor are interrupted whenever the input or output
buffers are filled or emptied and a core storage access
cycle is required to transfer data,

If the central processor requests memory access while
input or output peripherals are requesting access, the
processor obtains access on the first iree cycle. Be-
cause several requests for access to core storage
might be made at the same time, provisionis made fo
grant only one request for access during a memory
eycle. The priority interrupt logic incorporated into
the system analyzes these requests foraccessandde-
termines which of four possible channels istohave ac-
cess during that particular cycle. Refer to Figure 3.

All access to memory, including that by the central
processor, is controlied by the priority interruptlogic,
which controls four channels. The first channel has

highest priority; the fourth channel has lowestpriority.
Normally, priority is assigned to components thusly:

Channel and Peripheral
Priority or
Assignment Equipment
1 Card Reader
2 Controller Selector
3 Card Punch
4 Central Processor, including

Console Typewriter and
Paper Tape Reader-Punch

In general, priority is determined by the operating
characteristics and buffering of system peripherals.
Usually, the peripheral having ahighdata transfer rate
will have a highpriority; theperipheral witha low data
transfer rate will have a low priority. Two major ex-
ceptions to this arrangement are the card reader and
the central processor.

The card reader is buffered in such a way that it
must have uninterrupted access to core storage while
it is reading each character on a card, or data may
be lost, The card reader is assigned the highest
priority,

On the other hand, the central processor is assigned
the lowest priority (with the console typewriter and
paper tape reader-punch) because there is no danger
of lost data if central processor operation is inter-
rupted by higher-priority peripherals. Also, program-
run-time is optimizedif fully-buffered peripheralsare
permitted to operate at capacity.

The controller selector, through which all high-speed
peripherals access core storage, is assigned the
second-highest priority. These peripherals are fully
buffered and there iz little danger of dataloss if their
operation is interrupted. Controller seleetorpriority
is further discussed below.

The card punch which is a comparitively slow peri-
pheral, is assigned the third priority channel because
a card punch operation is initiated only when the card
punch buffer is filled. The card punch buffer can
maintain a partially-filled condition indefinitely; thus,
interrupting card punch operations cannot cause inad-
vertent data loss.

Controller §elector Priority Interrupt. The controller

selector is the common control and transfer point for
input-output peripherals, Specifically, the controller
selector: 1} provides peripheral configuration flexi-
bility and 2} permits the establishment of user-de-
termined priority systems.

RA0G o
llj:][’:‘ [P

SIS (S ‘IJ]

10

——

Core Storage

;

Priority Interrupt Logic

Central Processor
Cansole Typewriter
Paper Tape Reader-Punch

Card Reader

Controller
Selector Card Punch

To
Peripheral
Controllers

Figure 3. GE-225 Priority Access System

11

The controller selector permits the use of a wide va-
riety of peripherals. Through plug-in connectors,
peripheral controllers can be ¢onnected in many ways
and changed to meet varying system requirements.
This ability allows for addition of specific peripherals
as the needs of an installationgrow. It also aliows for
the addition of new or improved input-output units with
little or no logic or wiring changes. Figure 4 illus-
trates one possible system configuration. Smaller or
different configurations are alse possgible.

In Figure 4, the card reader, card punch, paper tape
reader-punch, and console typewriter are connected
directly to the central processor. The other peri-
pherals, through their controllers, are connected to
the central processor through the controller selector.
As many as eight controllers can be connected to the
controller selector through eight plug-in connectors,
gach with an individual address; these controllers can
he a combination of the following:

1 or 2 DSU Controllers

1 to 8 Magnetic Tape Controllers

1 to 8 High-Speed Printer Controllers

1 to 8 DATANET-15 Controllers

1 to 8 Document Handler Adapters (Controllers)
1 Auxiliary Arithmetic Unit {(includes Con-
troller)

As shown in Figure 1-4, controllers can direct the
operation of several peripherals, The following list
shows the maximum posgsible number of peripherals
each respective controlier can handle:

1 to 4 DSU Units
1to 8 Magnetic Tape Handlers
1 High-Speed Printer
1to 15 DATANET Terminals, plus a Paper Tape
Reader-Punch
i1 to 2 12-Pocket Document Handlers
1 Auxiliary Arithmetic Unit

The priority interrupt system actually operates ontwo
levels. The first level assigns priority accessto core
storage through one of the four priority channels, with
the controller selector being assigned the second-
highest priority (channel 2), The second level exists
within the channel 2 priority of the controller selector
and is assigned through eight address hubs, numbered
¢ through 7. Once a controller selector request for
accesg is granted, the controller selector priority
system determines which of two or more requesting
controllers ig to receive memory access. Whichcon-
troller receives access isdetermined by its assigned
priority, as evidenced by the controller selector
address hub to which it is connected, The controller

connected to address hub 0 has highest priority; the
controller on hub 7 has lowest priority within the con-
troller selector priority.

Thus, any controller on the controller selector has a
higher priority than the card punch {channel 3) or the
central processor and its associated peripherals
(channel 4),

Figure 5 is an expansion of the priority interrupt
control system shown previously in Figure 3. This
diagram futher illustrates the relationship between
overall system priority and controlier selector
priority. :

The priority assignments for peripherals connected
through the controller selector should be consistent
with the data transfer rates and the relative amounts
of data to be transierred by each peripheral, If re-
quests for access are received from two units simul-
tanecusly, the one having the higher transfer rate
will have the higher priority and be granted access
first. The other unit, having the lower priority, must
wait at leastone memory cycle before attaining access.
The reasoning behind this arrangement is that the
slower unit can wait longer with less effect on total
processing time and less danger of data loss than can
the faster unit, A magnetic tape controller, for
example, generally should have a higher priority {lower
priority address) than does a printer controller. Once
a magnetic tape controller initiates tape motion, the
controller must have ready access to memory for opti-
mum data transfer. The printer, on the other hand,
does not start printing untilithas received all requisite
data, and can therefore afford to wait several cycles
for data.

AUTOMATIC PROGRAM INTERRUPT

Because the central processor will lose no information
if program processing is temporarily interrupted, it
is possible to provide instruction coding in a main
program for an automatic interruption of the program
to process one or more ‘priority’ programs.

Automatic program interrupt is an optional feature to
control the simultaneous processing of two or more
unrelated programs. This provides for concurrent
operation of peripherals while the main program is
being processed. Priority programs could include
those inwhichitisdesiredtotransfer data from cards,
tape, or core storage to the high-speed printer, or to
a DSU.

Automatic program interrupt in the centralprocessor
monitors the card reader, card punch, and controller
selector peripherals; the interruptfeature takes effect
only when aperipheral that has previously been engaged
returns to the idle status. Initial engagement of the
peripheral is controlled by the stored program. An

12

Haper Tape
Reader-Punch
Control
Console
Card Reader Central
—] Processor
Card Punch
Controlier ili
B Selector Auxiliary
. - | Arithmetic
Unit
ki
' 7
0 1 2 3 4 5 6
DSy Magnetic Magnetic Document High-Speed High-Spee(_:l-
Controller Tape Tape Handler Printer DATANET-15|| Printer
Controller Controller Adapter Controller Controller
\ —
‘>® 1 Paper-Tape
Reader-Punch
Printer Printer
— @ @ | 2)

Figure 4. Large GE-225 System Configuration

R —
UG o L,
| L),

13

8

11
L

instruction early in the main program sets the auto-
matic program interrupt to permit exit from the pro-
gran when a peripheral signals the central processor
that it is idle. Note that this differs from priority
interrupt, which reguires that a peripheral actively
request access to memory, An autoniatie program
interrupt causes atransfer from the mainprogramto a
‘priority” routine whichinitiates use of a peripheral and
subsequently rveturns control to the main program;
simultaneously, the peripheral continues operation.
When interruption of the main program occurs, the

o

location of the next main program instruction to he
executed is stored in a special modification word.
When the ‘priority’ routine is completed, a branchin-
struction returns conirol to the main program.

Entry to a ‘priority’ routine automatically turns off the
automatic program interrupt. Topermit further inter-
ruptions of the main program, the ‘priority’ routine
must reset the automatic program interrupt before
returning control to the main program.

Core
Storage

i

Priority Interrupt Logic
Priority Interrupt Control

— Central Processor
Console Typewriter

Paper Tape Reader-Punch

CENTRAL PROCESSOR

Card
Reader

. Controller
Selector

Card
Punch

Magnetic Auxiliary
D8U Tape DATANET-15 Arithmetic
Controller Controller Unit
Magnetic Document High-Speed High-Speed
Tape Handier Printer Printer
Controller Adapter Controller Controller

Figure 5. Controller Selector Priority

{ 1) |j .

i) |' i
e |1 (R
N LTSy

14

~t

2. MACHINE

To efficiently program the GE-225, the programmer
should have a certain amount of knowledge concerning
numbering systems other than the familiar decimal
natation. He should alsc know how to convert num-
bers from one system to another. THe reasons for this
are simple: 1) the GE-225 system holds and manipu-
lates data in binary notation, 2) the programmer gen-
erally functions most effectively when working with
numbers in the decimal form, and 3} because neither
decimal nor binary notation is satisfactory as a com-
mon language hetween programmer and computer, an
intermediate numbering aystem (octal notation) is often
useful.

NUMBER SYSTEMS

The decimal number system consists of ten digits, 0
through 9, which are used in combination to express
values greater than 9. Depending upon their relative
positions in a number, digits are considered to be
equal to the digit times a posgitional factor. This
factor is some exponential power of ten, the base of
the decimal system. For example, the number 458
is actually an abbreviated way of expressing the fol-
lowing:

Positional
Digit factor Value
4 x 102 < 400 hundreds
+5 x 101 - 4+ 50 tenths
+8 x 100 -+ 8 units

= 458

Any value less than infinity can be éxpressed in
the decimal system by expanding the number of
positional factors as far as necessary,

—

é

LANGUAGE

10,000’s 1,000’s 100’s 10’s 1's
Positignal
factor 10".....10% 103 102 101 100
Digit
positions XX X X X X

Other number systems are possible, using bases other
than ten. In each system, the number of digits used
corresponds to the base, Anumber system with a base
of 7 could have the digits 0 through 6, with positional
values corresponding to the powers of 7. Note that,
whatever the number system, the highest digit used
is one less than the base of the system,

Binary Number System

The binary number system uses two digits, 0 and 1,
called hinary digits or bits, and has a base of 2.
Positional notation is similar to that of the decimal
system. Successivepositionsinabinary number, from
right to left, have values corresponding to increasing
powers of 2. Thus, the binary number 11011101 is
equal to 1 x27+1x26 4 0x25+1x24+1x23+1x

22 L ox 2l 41 x 20, or 221 in decimal notation.

Like the decimal system, any number less than infinity
can be expressed by using encugh positions.

Decimal

value ete..... 256 128 64 32 16 8 4 2 1
Positional

factor ol ...28 27 28 95 g4 53 92 9l 90
Digit

position X ...X X X X X XX XX

G225

15

Counting in binary is similar to decimal, beginning with
0, then 1. Oncethe highestdigitis reached, a carry to
the left adjacent digit position is made and the count
starts at zero again, Thusly:

Decimal

O] NN LI B = O
—
=]
=)

etc.

Addition in binary is simpler than decimal addition,
as illustrated in Figure 6. Other arithmetic operations
are similarly easy,

+ ¢] i
0 0 1
1 1 10

Figure 6, Binary Addition Table

The table shows that 0 + 0=0, 0 + 1=1, 1 + 0=1, and
1 +1=0plus a]l carry. Ina two-number addition, the
largest intermediate sum is never more than 1 with a
1 carry.

Example: Add the binary numbers 10110101 and

11010110

[

“<—-CATrry
1
0

s
L=]
O
O e

1010
1 11

+

=1100¢01011

Octal Number System

The octal number system uses eight digits, 0 through
7, and the base 8. Again, positional notation is similar
to that of the decimal and binary systems. Successive
positions in an octal number, from right to left, have
values corresponding to increasing powers of 8. Thus
the octal number 1376 is equal to 1 x 83 + 3 x 82 4+ 7

x 8l + 6 x 80, or 766 in decimal notation.

The octal system can he extended to express any size
number.

Decimal

value ete.....262,144 32,768 4096 512 64 8 1
Positional

factor 87 ... 8b g g4 g3 g2 gl g0
Digit

position X X X X X X XX

Octal counting is also similar to decimal counting. The
count begins with 0, proceeds to 7 {the largest octal
digit), generates a carry into the adjacent left pasition,
and starts again at zero. Thusly:

Decimal Octal
0 0
1 1
2 2
3 3
4 4
5 5
& 6
7 7
8 10
9 11

10 12
11 13
12 14
13 15
14 16
15 17
16 20
ete. ete.

Octal addition and other arithietic operations are
more difficultthanbinary or the familiar decimal oper-
ations. The most useful is octal addition, which is
facilitated by tables such as that shown in Pigure 7.

ble-225

16

QOctal Digits

B
o fo 1 2 3 4 5 & 7
1t 2 3 4 5 6 7 10
2
12 f2 3 4 5 8 7 10 1
A
3B 4 5 65 7 10 11 12
g 4 44 5 & 7 10 11 12 13
5 |5 6 7 10 11 12 13 14
6 6 7 10 11 12 13 14 15
7 P 10 11 12 13 14 15 16

Figure 7. Qctal Addition Table

The table is useful in adding two octal numbers, which
is the most common application the programmer will
require.

Example: Add the octal numbers 642351 and 162534.

111

642351
+ 162534

1625105

carry

Notation Convention

Wherever the possibility of confusion exists, a sub~
script notation is used to indicate to which system a
given number helongs. For example, 1010 could be
a binary representation of the decimal number 10,
an octal representation of the decimal number 520,
or thz deecimal number 1010, ., If a number is ex-
pressed in binary notation tﬁg subscript ,, is used:
1010,. Octal numbers are shown with a su%script :
1238, Decimal numbers are shown with a subscript
o 876, . If it is evident from the text which nota-
Eion is uéeod, the subscript is omitted,

Decimal-To-Binary Conversion

To convert a decimal number to binary, divide the
decimal number repeatedly by 2. After each division,

L

T
il
{E:] ’] T 0

write down the remainder in sequence from right to
left. The remainders will be the binary equivalent of
the initial decimal number. Note thateach division by
two leaves either a 0 or a 1 as a remainder,

Example: Find the binary equivalent of the decimal 53.

%
o &N pa
r-d L3y

= 1 1st remainder

—
[

]
Nl
(=]

I
L=zl

o
L J
=2

1st two remainders -

N

101 1st three remainders

b

o

— 0101 1st four remainders

o4
o -

1l ————» 13101 1st five remainders

0
21
0

1l ————110101 all remainders

Binary-to-Decimal

Binary numbers can be converted to decimal by the
same method az decimal-to-binary conversion, except
that the division is by 101 expressed inbinary (1010)
and the arithmetic is in inary. After each division,
the binary remainder is converted to a decimal digit.

The remainders, in reverse sequence, are the decimal
equivalent of the original binary number.

EJ TR R

17

Example: Convert 1011110115 to decimal notation.

100101
1010 | 101111011
1010
1110
1010
10011
1010
1001 = 9y ™ 9 units digit

11

1010 [~ 100101
1010

10001

1010
111 = 7{g—=79 tens and units
digits

(1]
1010| 11

11 = 3;g———® 379 hundreds, tens,
and unit digits.

Anather method would be simply to lookup the decimal
equivalents of the corresponding powers of two in the
table shown in Figure 8§ and add.

Example: Convert 1011110115 to decimal notation,

Binary
Positional
Factors
908 2% 9% 28 92 gl Og——

i Binary
l Digits
1
2
0
8
16

gli.

gl2-

g13=

P

1

1 (24
2 048
e ooe . 40906

8 192
16 384
32 768

65 336
131 Q72
... 262 144

524 288
1048 576
.. 2087 152

4 194 304
8 388 608
.. 16777 218

33 554 432

67 108 864
134 217 728

268 435 456
536 470 812
. 1073 741 824

2 147 483 648
4 %94 967 296
. 5589 934 502

17 179 860 184
34 359 738 368
G8& 71D 476 736

137 438 953 472
274 877 906 944
549 755 813 888

09% 511 627 7746

Figure 8. Table of Powers of 2 and 8

10
11
12

13
14
15

16
17
13

19
20
21

22
23
24

25

26
27

28
28
30

31
32
33

34
35
36

37
38
38

40

BlE-229

18

Binary-Ta-Octal Conversion

Converting numbers from binary to octal notation is
a simple meclanical procedure. Three binary digit
pusttions are the equivalent of one octal bit position,
Thus. @4 15-bit pumber, such as 101 001 110 111 0012,
is a 5 digit octal number when converted. To convert,
the binary digits are separated into groups of three,
becinning on the right, Each group of three is evalu-
ated individually; the right-most bit has o welghtof 1,
the center bit is 2, and the lefi-mostbit equals 4. As-
suming 1-bits in all three positions of a group, the
highest vidue expressible is 7, which is the largest
oetal digit.

Example: Convert 1010011101116015 into vetal nota-
tiun.

Octal Position Factors

421 421 421 421 421 Conversion Weight

101 001 110 111 0Ol
= b 1 6 T 1

Binary Number
Qctal Equivalent

Octal-to-Binary Conversion

By reversing the aboveprocess, conversion from octal
to binary notation is simplified. Beginning with the
right-most digit of the octal number, each digit is
converted to its binary equivalent, Each octal digit,
upon conversion, requires three bit positions.

Octal-to-Decimal Conversion

One method of converting octal nunibers to their deci-
mal equivalents is to 1) convert the octal number to
binary and 2} convert the binary equivalent to decimal,
by the previously described procedures.

Another method is to use a conversion table amld
merely lock up the equivalent decimal wanber. For
large octal numbers, such conversion tahles often
runn to many puayes, The short conversion table in
Figure 9 is usctul in converting octal niumbers up to
ITTTTTT (sufficient for GE-225 programming) directly
to decimal notation. The table shows the decimal
equivalents of all octal digits as a function of their
position in the octal number.

To illustrate the use of the table, consider the octal
number 1761354, Toconvertthis numbertoits decimal
equivalent, read the equivalent decimal value of each
octal digit from the table and addthem to find the total
decimul equivalent, as shown below:

Octal Positions Decimal Positions

85 g% g% 83 g2 g1 8% 105 10% 103 102 10! 10°

Example: Convert 1234567g into binary notation. 1 7 4
4 0
7 1 9 2
6 5 1 2
5 2 4, 5 7 6
4 - - 2 2 9, 3 7 6
3 l =2 6 2 1 4 4
2 ———y |
1 —=001 010 011 100 101 110 111 thus, 1761354 =5 1 6 8 4 44,
OCTAL
DIGIT OCTAL DIGIT POSITION
VALUE g6 83 gt 83 82 gl &0
1 262,144 32,768 4,096 1
2 524,288 65,536 §,192 1,024 128 16 2
3 786,432 98,304 12,288 1,536 162 24 3
4 - 131,072 16,384 2,048 256 32 4
5 - 163, 840 20,480 2,560 320 40 5
8 - 196,608 24,576 3,072 3g4 43 ;]
7 - 229,376 28,672 3,584 448 56 ki

Figure 9, OQOctal-to-Decimal Conversion Chart

1%

Decimal-To-Octal Conversion

Decimal-to-netal conversion can be done by first con-
verting the decimal number to its binary equivalent,
then reconverting the resulting binary number tooctal
notation.

Another method involves the use of the two tables in
Figure 10. The octal equivalents of the decimal digits
are found in the upper table and are then added octally.
The lower table assists in the required octal addition,
by permitting the octal eguivalents to be added in
decimal, a eolunmin at a time, then converted to oetal
notation.

CONVERSION CHART

DECIMAL. POSITION
DECIMAL
DIGIT 109
1 308, 240 23,420 1,750 144 1
2 606, 500 47,040 3,720 310 24 2
3 1,111,740 72,460 5,670 454 36 4
1 1,415, 200 116,100 7,640 G20 5¢ 4
5 1,720, 440 141,520 11,610 764 G2 5
G 2,223,700 165,140 13,560 1,130 T4 i
7 2,527, 140 210,560 15,530 1,274 106 7
8 3,032, 400 234,200 17,500 1,440 120 10
) 3,335, 640 257,620 21,450 1,604 132 11
OCTAL EQUIVALENTS OF DECIMAL NUMBERS
DECIMAL OCTAL DECIMAL QCTAIL DECIMAL OCTAL
1 1 15 17 29 35
2 2 16 20 30 36
3 3 17 21 a1 37
4 4 18 22 32 40
5 5 19 23 33 41
G g 20 24 34 42
7 7 21 25 35 44
8 10 2z 26 36 44
9 11 23 27 a7 45
10 12 24 30 38 46
11 13 25 31 39 47
12 14 26 32 40 50
13 15 a7 33 41 al
14 14 Z8 34 4“ 42 52

Figure 10. Decimal-to-Octal Conversion Charts

Example: Convert 345978, to octal notation.

Decimal Positions Octal Positions

105 104 103 102 10! 100 g6 8B g4 g3 g2 gl g0

Adding the 80 column in decimal gives 10y g, which is
12g, according to the lower table in Figure 2-5.
Writing the 2, carrying a 1 into the 8l column, and
adding in decimal gives 7g and no carry; write the 7.
Adding the 82 column in decimal gives 21y, which is
258' Writing the 5, carrying a 2 into the 83 column,
and adding gives 11&0 or 13g. Writing the 3 and carry-
ing the 1 into the 8% column gives 4g, no carry; write
the 4. The 85 column gives 2 and the 86 column is 1.

3 4 5 9 7. B== 1 0

L L - 1 0 8

— — »= 1 6 0 4

= 116 10

> = 11 6 1 0 0O

»=_1 1 1 1 7 4 0

thus, 34597810 =1 2 4 3 5 7 24
il _ oy (e
kU}J [31 N (/L/j {Lj ol

20

JATA WORDS

‘v the GE-225, the word (or basic unit of information)
:onsists of 20 binary digits. Words can be stored in
1096 to 16,384 core storage locations, each of which
-8 individually addressable, Additional random access
md sequential access storage is available in dise
storage units and magnetic tape.

A word can be an instruction, a binary data word or
mdmber, a binary-coded-decimal word (for expressing
zither alphabetic or numeric characters}, or any
satternof 20 bits the programmer so desires. The 20
bit positions of the GE-225 word are depicted in
Figure 1t. S {or 0} refers to the sign position, 1
indicates the high-order bit position, 2 the next highest,
ad o on. Bit position 19 indicates the low-order
bit position,

LI T TI T T ITT]

Cr23. .0 0 ...,
5

Figure 11. Basic GE-225 Word

Binary Data Words

¥hen a word is interpreted by the GE-225 as binary
data, the 0 (or S} position acts as the arithmetic sign.
A 0-bit in the sign position indicates that the word is
Aositive; a 1-bit indicates that the word or number is
negative, Inhinarywords, 1-bitsinpositions1 through
18 indicate values corresponding to the powersof two.
3 1-bit in bit position 1 equals 218 or 262,144¢g; in
sosition 2, a 1-bit equals 217 oy 131,072, ; in position
.9, 9% or 1. The largest positive decimal number that
*an be expressed in the 20-bit binary wordis 219 - 1,

or 524,23710.

Negative numbers are expressed in binary form by
placing a 1-bit in the signposition and the 2's comple-
ment of the desired number in bit positions 1 through
1.

To express a given negative number:

1. Write the positive number in binary

2. Change it to the 2's complement form by
a) converting all 1-bits to 0-bits andall 0~
bits to 1-pits and
b) adding a 1-bit to the least significant bit
positian,

For example, to express the decimal =684 in binary,
write +6810 in binary:

Ble-225

lajolololo]o
3

lolo[ololololel1]ololo1{0l0]
s 123)

19

Inverting all bit positions pgives:

b O G h O OO h e h it lelil
S1238o 1

Adding a 1-bit to bit position 19:

[1|111i111I1i1l1|111[1|1I1l0|1|1l1|1101?|
s1238 is

The largest negative pumber that cap be expressed in
the 20-bit binary word is 219, or 524,28810.

A machine instruction is provided for automatically
converting a positive number to a negative number,
Also, in subtract operations involving positive num-
bers, the required complements are automatically
formed.

Double Length Binary Words

The GE-225 can perform double length data word aper
ations. Double length words consist of two 20-bit words
which are normally stored in adjacent memory loca-
tions. For processing, they are treated as a single
word consisting of a sign bit and 38 data bits,

For illustration, consider the decimal 3,862,483, .. In
binary, this number would be stored in two adjacent
memory locations:

221 .19
-
{g|0|0|ol0|0|0[0i010|0|0|0|0[0 o JoThT1]1]
ST23 N, V.. T
Memory Location 1
216 914 911 28 35 20
glofiiolaf1TTjo AT a[t [1[1]oJi[0l0]1 i)
8123 . T T3

Memory Location 2 !]

21

The most significant half of the double word is stored
in the first memory location. The adjacent (higher)
location containsg the least significant half of the word.
Bit positions in the second memory location have values
corresponding to the first nineteen powers of two (20
through 218} while those of the first {lower} memory
loeation correspond to the second nineteen powers of
two {219 through 237}, The signsof both locations are
the same, 0 for plus or 1 for minus. Double length
negative numbers are expressedinthe 2’scomplement
form.

Floating- Point Notation

The auxiliary arithmetic unit (AAU) expands the arith-
metic capability of the GE-225 to include normalized
and unnormalized floating-peint operations. Repre-
sentation of floating-point numbers is discussed inthe
section, auxiliary Arithmetic Unit Operations,

GE-225 installations, with or without the AAU, can
process floating point arithmetic with utility subrou-
tines provided by General Electric for this purpose.
However, for voluminous tloating peoint calculations,
the AAU provides greater efficiency, because of its
speed and capacity.

Binary-Coded-Decimal Data Words

In addition to its basic binary capability, the GE-225
can process binary-coded-decimal (BCD) or alpha-
numeric data, The six bit positions of the BCD code
may be used to express 64 character configurations,
including all alphanumeric and special characters of
the GE-225 character set,

The 6-bit code consists of two groups:

ZONE NUMERIC
GROUP GROUP
B A 8 4 2 1

I

The numeric bits correspond to the first four powers
of two, asthey do inthe binary system, and can express
up to 16 numeric values, 0 through 15. The zone bits
provide for coding alphabetic and special characters.

Selected characters are shown below inBCD. All GE-
225 characters and their equivalent BCD codes are
shown in the Appendix.

In the BCD mode, the GE-225 word can contain three
characters, occupying 18 bit positions (2 through 19).

w2 e
(=
—
=
(=
—

Y]
—
—
—
o
o=
—_

The remaining two bit positions (8 and 1) do not nor-
mally contain data, but are used for program and
printer control purposes discussed later, A repre-
sentative GE-225 BCD word is shown:

8 421
olo]1]0]

s

BAB421BAB421BA
lolofe]1]ooTiToJo o JoTt 1o o 0]
51« ——— N

B] 2

= 3}: _r"a;w

Double length BCD words are possible to express al-
phanumerics consisting of as many as six characters.

Optional instructions permit variable length BCD arit-
metic operations. Negative numbers must be expres-
sed in 10’s complement form with a 1-Dbit in the sign
position. Note that, in BCD numerics, the zone hits
(2, 3, 8 9, 14, 15 bit positions) are set to zero. Al-
though the BCD word containsonly three numerics, the
variable length feature permits operations with BCD
numbers of any practical length.

Examples of BCD quantities:

Deeimal BCD ward(s}

. 10 L +Jol1]o]

+ 989

- 10 L -lelefo]

- 989 -Tofils]

+87649 | +lolsl7 |[clelal9]
~gwea0 | -lo[1]2 J[FT3IBIT]

Blz- 225

22

INSTRUCTION WORDS

Instructions are expressed as 20-bit words, Three
different formais are used.

Format I. Allinstructions involving reference to mem-=-
ory are written in Format L. Ineludedare arithmetic,
memory transfer, and certain branch instructions.
Complete descriptions of these instructions are pro-
vided in subsequent sections.

The format for memory reference instructions is:

DO X WITH DATA
THIS LOCATED HERE
0 4 5 6 7 19
OR
-f H :
OPERATION X OPERAND
CODE : ADDRESS
T A 5 8 1 19

The five bits (0 through 4) indicate the operation to be
performed, such as add, subtract, read cards, etc.

Bits 5 and 6 provide for automatic address modifica~
tion by stipulating whether the contents of one of sev-
eral X registers are to be used to modify the operand
address. automatic address modification is treated
in Chapter 4.

Bits 7 through 19 designate the operand address; that
is, the memrory location where the data to be added,
subtracted, ete., is stored.

About 60 of the over 300 instructions in the GE-235
repertoire require operand addresses, Instructions
without operand addresses cannot be address modi-
fied, This permits bits Sand 6, and 7 through 19 to be
used for other purposes, Instructions in this cate-
gory (no operand address) are called general instruc-
tions, Format II, or shift instructions, Format III,

Format II. All instructions indata transfer {(excluding
memory transfer) and input-output categories and most
internal test-and-branch instructions are written in
Faormat II. Instructions in this format are commonly
called general instructions and have the same oper-
ation code in bit positions S through 4{10 101, or 25g).
Format II has three variations, corresponding to the
three general categories mentioned.

The word movement variation is for instructions in-
volving full word transfers between arithmetic regis-
ters and the arithmetic unit. They assume this format:

§—=4 56 T8 9 - >19
Opg;;t?lon 0 00 1| Specifies Exact Op_ez‘at_io.nm
___._\/_.__/\w_/ SN]
Always is 01 indicates
25g for word Move-
General ment Variation
Instruction
No Address Interpretation of
Modification these hits is ex-

plained under
‘Micro-program-
ming-

The input-output variation is used for instructionsin-
volving the central processor and peripherals. Bits
S through 4 contain 25g (10 101) and bits 7 and 8 are
0's. The remaining bits specify the input-output oper-
ation, The format is as follows:

§—>4 56 78 9—s13 14—=18
Operation oo0lo o0 Starting Specific
Code Address | Operation

Always is Designates Designates
254 for Input- Quiput the specifie
General Variation input-gutput
Instruction operation
No Address Either a mem-
Modification ory location or

peripheral con-
troller address

The test-and-branch variation is used for instructions

that provide for breaking the normal sequence of in-
struction execution, Thesge instructions are identified

by 25g (10 101} in bit positions § through 4 and 1-bits

b= 225

23

in positions 7and 8. The test condition for determining
4 branch to another instructionis specifiedby bit posi-
tons 9 through 19. The fermat is:

S -->4 56 78 9 10——— - >19
Operation . T

I Code _0 0 { 11 ‘ 1/0 | Branch Condition
i, PR PN W o /
Always is Degignates Spectfies con-
29g for Test-and- dition to be
General Branch tested
Instyuction Variation

No Address 1 =branch on

Modification negation (no)
} = branch on

affirmation (yes)

The specific bit patterns for all FormatIl instructions
can be found by converting the octal equivalent of the
instructions to binary. The cctal form of each in-
struction is included in the instruction descriptionsin
subsequent sections.

Format [I[. Omnly shift instructions are written in
Format III. Shift ingtructions are uged to shift one or
more bits within or between arithmetic registers, Bit
positions 8 through 4, designating the operation code,
contain 25g; bits 7 and 8 contain 1 and 0 respectively,
identifying a shift operation; bit ¢ indicates direction
of shift {right or left); bits 10 through 14 identify the
registers involved; bits 15 through 19 designate the
number of bits to be shifted. The format is:

§5——=4 58 78 8 10 14 15 18

Operation Exact Length
Code 00110 q/0 Operation | of Shift
Always is Shiit Specifies
254 for Varia- Registers
General ticn
Insgtruction
No Address 1 =left Up to
Modification shift 31 bit
0 =right positions
shift

While it is possible to prepare programs for GE-225
processing directly in binary notation, it is infre-
quently done because such programming is tedious and
subject to clerical error., However, a knowledge of
binary notation and instruction structure is essential
in micro-programming (the building or creating of

instructions by the programmer). Micro-program-
ming is discussed in a later section.

In program debugging and patching, octal notation is
frequently used for 3 reasons: 1) octal notation
provides the programmer with a more meaningful
presentation than does binary, 2) the GE-225provides
printed outputs (during assembly by the General
Assembly Program) and memory dumps in octal
notation, and 3) octal can easily be convertedto binary
or decimal, On the other hand, binary is difficult to
read or write; also it is tedious to convert to the
familiar decimal notation.

GE-225 Octal Notation

Conversion of GE-225 words from binary to octal or
octal to hinary is a simple mechanical procedure.

Given the GE-225 binary word:

lglihlohlollhh lololilols ‘} |§\6J1|1fig|

Starting on the right, divide the word into groups of
three bits (giving six groups of three, and one group of
two) and assign octal values to the bit positions as
shown:

01 1101 [o11 | 100] 101 | 100 | 111 [<—Bits

D@ |®|@|®|®|® [Ftow

No.

Evaluate eachgroup and write the equivalent octal digit:

01 =
101 =
011 =
100 =
101 =
100 =
111 =

©,

} - 1534547,

~l o o sk L3 1 =

PEPEEE

The result of the binary—to—oétal conversion is a 7-
digit number in place of the longer, less meaningful
20-Dit binary word.

BlE-229

Note that any GE-225 word can be representedas a 7-
digit octal number, whether it beadataword or an in-
struction.

The representation of the number 1234567y inbinary is
accomplished by reversing the above process:

421

Binary Word

S1 - 19

= 001 —>0{01]010]011]100]101 [110 [111 |
— A . 2 i

= 0i0 —-
= 011
= 100 -
= 101 -
= 110
= 11 - e -

=] O o o LS DN

Becaqse of the simplicity and convenience of octal nota-
tl_on, ;t is used freely in the balance of the manual to
simplify explanations and to provide familiarity.

SYMBOLIC PROGRAMMING

Programs for the GE-225 information processing
system are generally written in symbolic coding,
The programmer is thus able to write instructions
in meaningful symbolic codes, rather thanthe absolute
numeric code language of the computer, This reiteves
him of much time-consuniing clerical detail, especially
important in writing lengthy programs,

The General Assembly Program

The General Assembly Program transforms symbolic
mnemonic codes into numeric machine language for
each instruction in the repertoire of the GE-225
system, These mnemonic codes have been chosen
to provide significance and easy recognition of the
operation performed, For example, the mnemonic
code “ADD” instructs the General Assembly Pro-
gram to build a numeric instruction by which the
GE-225 system performs algebraic addition,

The General Assembly Program is conmprised of
two parts;

1. The symbolic language used by the pro-
grammer in coding the source program,

2, The actual assembly program {on punched
cards, perforated tape, or magnetic tape)
supplied by General Electric that processes
the source {or symbolic) program into a

ready to execute machine language (or object)
progranm.

The symbelic language consists of these standardized
mnemonic codes divided into two general categories:

1. The pseudo-instructions used by the General
Assembly Program for memory location
assignments, program control constants,
program constant storage, and program
control during the assembly operaticn, These
do not correspond to “real” GE-225 machine
tnstructions,

2. The mnemonic operation codes corresponding
to the more than 300 machine instructions
of the GE-225 system,

There generally is a one-to-one relationship between
the mnemonic operation code prepared by the
programmer and the machine instruction appearingin
the object program as assembled by the General
Assembly Program. A single pseudo-instruction,
however, can result in the generation of irom ane to
several machine instructions during the assembly
operation. The pseudo-instructions are described in
a separate manual, GE-200 Series General Assembly
Program II, CPB-1180, which also discusses allphases
of the assembly cperation and operating procedures.

The machine instructions for the GE-225 cenatral
processor are described in Chapters 4, 5, and 6 of
this manual. Instructions for the various peripheral
subsystems are described in the separate manuals
covering these subsystems, as listed in the Preface.

A complete, brief listing of General Assembly Pro-
gram instructions in both alphabetical and octal
order is given in Appendixes A and B.

MICROPROGRAMMING

The flexibility of the instruction repertoire is further
enhanced by the addition of a {feature known as
microprogramming. Micvroprogramming is the
building of a computer instruction under programmer
control by the specification of a series of elementary
operations. In the table, Figure 12, a 1-bit in any of
the labeled bit positions results inthe elemental action
described therein when the instruction is executed.

For example, a 1 in hit positions 10 and 11 of the
“meneral” Shift Right instruction instructs the com-
puter to take the actions A75—®Q, and Ay3—™N, .
The octal operation code for this specific command is
2511400, Reference to the octallisting inthe Appendix
shows this to be an ANQ (Shift A into N and Q}
command. The instruction repertoire describes ANQ
on the following page.

25

The contents of Register A (1-19} are shifted K
places to the right into both Repister N and
Repister . Bits shiffed out of Register A (19)
enter both Register @ (1) and Repister N(1). Bits
shifted out ol Hepister N (6) and Register Q (19}
are lost, If the sign of Register A is plus, the
vacated positions of Register A are filled with
zeros; if the sipgn of Hegister A is minus, ones
fill the vacated positions of Register A,

In addition, the programmer can create instructions
which are not listed in the instruction repertoire.
For example, a 1-bit in bit positions 12 and 13 of the

seneral instruction Shift Right shifts the contents of
Q@ into A (Qrz—™A,) and N into A (N\—®A,). The
bits from N and Q are logically added as they shift
into A. The octal code for this ereated instruction
would be 2510300.

This information on microprogramming is included
only for the use of the advanced programmer who
desires to create hisown specialinstructions. Normal
programming will employ only the mnemonic or octal
codes that have been assigned to the most common
combinations of “micro” operations.

Ble- 229

26

217

s 1 2 3 5 6|l ¢+ 8 9 10 1y 12 13| 14 15 1s| i 18 19
INSTRUCTION SUB INSTRUCTIONS & ADDRESSES
1 0o 1 0
SHIFT RIGHT 1 0 o0 g|=zj < | «| « | LENGTH OF SHIFT
a2 2 2 o Tg
4 X 4 Z el
SHIFT LEFT 1 0 1 o o LENGTH OF SHIFT
= «
=
E T
m —
e e
m m -
WORD MOVEMENT 0 1 a i .
o4 gﬁ 2 |8l alalal &
(REGISTER & e ol 51 A 4
TRANSFER) kg B A .
< < < =
B A o O T
INPUT/QUTPUT 0 o DATA ORIGIN DECODE
MULTIPLE
OF 128
PRIORITY 0 0 CONTROLLER 1
CONTROL ADDRESS
BRANCH TRUE it 1|0 1 DECODE
BRANCH FALSE 1 1|1 1 DECODE
PRIORITY 1 110 CONTROLLER 1 DECODE
CONTROL or ADDRESS
BRANCH 1
Figure 12. Table of Elemental Instructions
i E' iy Cﬂ)
o g AL
ML (G403

3. CENTRAL PROCESSOR ORGANIZATION

The central processor performs all arithmetic and
logical functions in the GE-225 system and acts as a
central control for all internal and peripheral oper-
ations. Because the program (or instructions for data
processing) is hetd in memory like the datato be pro-

cessed, the GE-225 is known as a stored program
computer.

MAGNETIC CORE STORAGE

Instructions and data are held in the primary storage
unit, or memeory, through the use of tiny ferrite cores.
Each core isa ring, or toroid, of ferromagnetic mater-
ial capable of being magnetized inone of two polarities
when current is passed through wires inserted through
the cores. Currentthroughthe wiresgeneratesa mag-
netic field which in turn magnetizes the core; when the
current is stopped, the core remains magnetized, If
the direction of current flow is reversed, the field about
the wire is reversed and the ferrite core will be mag-
netized in the opposite direction. The two possible
states of magnetization can ve called 1 andQ, corres-
ponding to the two binary digits,

Current

No
Flow

Sense
Winding Current
Flow

| A |

—»]

—

Figure 13 illustrates this principle of storage. Note
that two wires are used to provide the magnetizing cur-
rent and current mustbe present inboth wires to mag-
netize a core or switch the core from one magnetic
polarity to the other, Thethirdwire shown, the sense
winding, is used to sense the change in magnetization
of the core, Asthecore ‘flips’ from one magnetic pol-
arity to the other, a pulse is induced in the sense
winding by the collapsing field of original polarity and
the increasing field of the new polarity.

The basic GE-225 memory module is anarrayor block
of cores 84 cores wide, 64 cores long, and 21 cores
deep, It can be visualized as 4096 vertical columns of
21 cores each. Each column of cores can contain 20
information bits plus a parity (or check) bit. When a
word is stored in or read from memory, the bit pat-
tern of the wordis simultaneously set into or read from
all 21 cores of the desired column or storage location.
In addition to the basic 4098-word module, memoryis
also available with storage capacities of 8192 and
16,384 words.

Each memory word is individually addressable. Ad-
dresses are used to make data stored in memory

Current 1 Induced

Current

Oy

H)

)

" Direction of
Magnetization
Resetting a Core
Setting a Core A ‘1’ Bit to ‘0’ and Reading
to the ‘1’ State Retained out a ‘1 Bit,

Figure 13. Bit Storage in a Ferrite Core

BE-225

29

relocatable. Instructions requiring data to be moved
to or from memory must specify an operand address
corresponding to the memory address containing the
data. Instructions held in memary are accessed by
their addresses. Addresses are numbered sequentially
from 0000 to 4095 (or 8191) for basic memory sizes,
Addressing the additional 8192 words in a 16,384 word
memory is covered in a later section.

Access time for a word stored in memory is 18
microseconds {millionths of a second); thisincludes 1}
reading the word from core storage, 2) storing the
word in a register external to memory, and 3)restor-
ing or replacing the word in core storage, Core
storage access time is also called a memory cycle
or a time, A single data word transfer to or
from memaory, including access time for the instruc-
tion effecting the transfer, requires 36 microseconds
(2 word times); a double length word transfer requires
54 microseconds (3 word times), When a word is
read from memory, all 21 bits are transferred simul-
taneously, Storing a word in a given address destroys
the previous contents of that address,

Stored Program

Because instructions, like data, are storedin memory,
data processing canproceed automatically, performing
instructions in sequence as they exist in storage, or
branching to other instructions in the sequence depend-
ing upon the preceding instruction.

For the same reason, self-modifying programs are
possible. Insiructions can be manipulated as well as
data, permitting changes to the basic program asa
result of in-process decisions.

Addresses:
0000
INDEXING
0128
AUTOMATIC
PROGRAM INTERRUPT
0256
CARD
INPUT-OUTPUT
1000
PROGRAM
2500
CONSTANTS
2800
MAGNETIC TAFPE INPUT-OUTPUT
2840
PRINTER INPUT-OUTPUT
3100
SUBROUTINES

Figure 14. Representative Allocation of Memory

Programming efficiency is aided by good planning
ar the arderly use of available memory. The designa-
tion of specific areas of memory for specific purposes
reduces programming time and errors., Figure 14
illustrates a possible allocation of memory space for
input-cutput, constant, instruction, and subroutine
storage.

X Register Operation

Memory addresses 0000 through 0003 have special pro-
perties. Instructions are provided to permit their use
as program counters by making provision for incre-
menting their contents by a constant and testing the
contents with one of two special test instructions.

In addition, locations 0001 through 0002 canbe used for
modification word storage and are called X registers.
Bit positions % and B of the basi¢ instruction word can
be used to specify which of the three X register con-
tents is to be used for modification, as indicated:

Bit Position X Register
5 6 Selected
0 0 None
0 1 0001
1 0 0002
1 1 0003

If an instruction containing an operand address also
specifies an X register in bit positions 5 and 6, the
contents of the specified location (0001, 0002, or 0003)
are added to the operand address to give the effective
address. Theinstructionis executedusing the effective
address, rather thanthe operand address. The original
instruction in storage remains unchanged.

X registers facilitate addressing upper memory (loca-
tions above 8191), as describedinthe section, Addres-
sing Upper Memory.

Additional modification words are available as partof
an optional package that also provides a three-way
compare instruction and decimal (BCD) arithmetic
capability. The added modification words consist of
31 proups, each containing a word that can be incre-
mented as can location 0000, and three words with the
same maodification properties as locations 0001 through
0003. This provides 96 modification words and 32
counter words in memory locations 0000 through 0127,

Use of the optional modification groups requires the
specification of the desired modification group with a
special select instruction. A group remains selected
until a subsequent special select instruction isusedto
specify another group. Once a group is selected, the

GRS

30.

desired modification word within the group is specified
by bits 5 and 6 of the instruction. For example, if
modification word group 28 were specifiedby a special
select instruction during a normal program sequence,
all subsequent instructions with X register codingof 01,
10, or 11 wouldbe modified by the contents of locations
0113, 0114, or 0115, respectively, until another modifi-
cation group was specified by another select instrue-
tion.

M Register Operation

The M register is a 21-bit register (see Figure 15).
All information transferred to or from core storage
must first pass through the M register, which is the
focal point for information transfers among GE-225
system components. The 21 bits of the M register
include 20 information bits, plus a parity check bit.

Parity Checking

A parity check isperformed automatically asaword is
read from memory into the M register. The parity
check circuits count the 1-bits contained in all 21 bit
positions; it the count is odd, parity is correct and
operations proceed; if the count is even, then a parity
error (bit drop or pick-up) has occurredand the parity
alarm light on the control console is turned on, In
addition, depending upon the position of the ‘Stop on
Parity Alarm’ switch on the control console, a com-
puter halt or aprogrammedbranch for remedial action
can occur.

Words written into memory haveaparitybitgenerated
{as required} by the parity check circuits, while the
word is held in the M register. The parity check cir-
cuits count the bits and, ifthe countis even, generates
a bit for the 21st bit position. If the count is odd, no
parity bit is required. Ineither case, the entire 21 bit
positions of the M register are stored in memory.

ARITHMETIC AND CONTROL
REGISTERS

Arithmetic operations, such as addition, subtraction,
multiplication, and division, require temporary stor-
age devices external toc memory for holding inter-
mediate and final results and performing the necessary
calculations. The GE-225 uses arithmetic registers
for these purposes. In addition, arithmetic registers
are used for shifting and other data manipulations
related to decision~making and arithmetic capabilities.

Arithmetic registers include:

B Register —

A Register -

Q Register

N Register

C Register (optional, not illustrated)
Arithmetic Unit

Control registers control the sequential processing
and interpretation of instructions, These registers
include:

1 Register
X Registers
P Counter {or register)

Arithmetic Registers (Figure 16)

B REGISTER. The B Register is a 20-bit register

which acts as a buffer register betweenthe M register

and the central processor during data transfers. The
B register is also a buffer for arithmetic operation
and contains:

The addend for addition

The subirahend for subtraction
The multiplicand for multiplication
The divisor during division

Cutputs from the B register are suppliedto the I regis-
ter and the arithmetic unit. The B register is also used
in the execution of certain data transfer commands.

A REGISTER, The A Register isa 20-bit register and
is used most frequently in central processor oper-
ations. It regeives information from and transfers
information to the arithmetic unit. It serves as the
accumulator for the central processor and performs
this function by holding:

The augend during addition

The sum after addition

The minuend during subtraction

The result after subtraction

The most significant half of the product after mul-
tiplication

The most significant half of the dividend before
division

The quotient after division

The most significant half of a word after the exe-
cution of all double length word instructions

A word transferred from, or to be transferredto,
Inemory

The word on which extractionis performedduring
the execution of the extract instruction (Ex-
traction is the examination and replacement
of bits in a word according to a previously~
defined pattern)}

T S L TN)
(GlE > 225

N

Address

Decoding P Counter

Network 123,, 15

Core
Storage
1 Register
01 2 3 . . e e . 19
M Register i
Card Reader g B Register
Card Punch S 123, . .. e 19 P S128 . .. e e 12
Controeller i
Selector
Peripherals
Parity
Check .
Arithmetic
Unit
r
A Register @ Register
5123 . . . e 19 S123. e 19
N
Register

Console Typewriter

Paper Tape Reader-Punch

Figure 15, GE-225 Arithmetic and Control Register

The word to be shifted during various shift

instructions

A word to be transferred to another register or to
be modified in some way during the execution
of various data transfer commands
The word that determines future action during the

execution of branch instructions.

In addition, manual access to the A register is per-
mitted by 20 console switches provided for this pur-

pose.

Q _REGISTER.

The @ Register is a 20-bit register

which acts with the A register to form a double length
word accumulator (38 bits plus a sign bit) during the
execution of double length word instructions. Infor-
mation is not transferred directly from memory into
the Q register, but is readintothe A register and then

shifted into the Q register. The Q register performs
the following functions:

1.

Helds the least significant half of the augend
before double precision (double length) addi-
tion, and the least significant half of the sum
after addition,

Holds the least significant half of the minuend
before double precision subtraction, and the
least significant half of the result after sub-
traction,

Heolds the multiplier before multiplication,
Holds the least significant half of the result
after multiplication,

Holds the least significant half of the divi-
dend before division,

Holds the remainder after division,

32

Holds the least significant half of the double length
word during the execution of double length word
fustructions,

Holds the least significant half of information tobe
shifted during double length shift instructions.

N REGISTER. TheN RegisterisabB-hit register which
iz used asasingle character buffer between the central
processor and 1) the console typewriter, 2) the paper
tape reader, and 3) the paper tape punch. This permits
input-gutput operations with these units to occur simul-
tanecusly with other central procesgor operations.
Information is transferred directly between the N reg-
ister and the A register by meansof shift instructions.

C REGISTER, The C Register, or Real Time Clock, is
an optional equipment feature that permits the timing
of operations in either relative or real time, This
feature is convenient where it is necessary to deter-
mine or record elapsed time of operations performed

hy the GE-225, or of operations external tothe (G1-225
system. In addition, it is possible to determine the
time of an oceacrence rvelative to actual {Greenwich
or local) time or to any suitable time basc.

The C register is a4 19-bit binary register that can bt
set directly from, or readdirectly into, the A register.
Only bits 1 through 19ofthe A register ave involved in
such transfers.

The C register is automatically incremented by one,
in binary mode, every sixth of a second while power is
applied to the GE-225. When the C register count
reaches the binary equivalent of 24 hours (518,400
sixths of a second), it automatically resetsto zero and
starts counting again, Translation of the C register
contents from binary notation to clock time can be
performed either manually or by a simple conversion
routine. Instructions and conversion procedures are
discussed in Chapter 4,

‘ Address [, P Counter
Decoding -
Network 123 .. 0 v v v | 15
Core
Storage
I Register
[T S R R S T 19
]
-« M Register f———» B HRegister
Card Reader -
Card Punch I I S T 15 P 2 T 19
Controller
Selector
Peripherals Parity
Check Arithmetic
Unit
|
A Register - ————o Q Register
S 123 . . . e e e e e e e e s 19 S 123 e e e e 19}
N d
Register
2. ... B

Console Typewrifer
Paper Tape Reader-Punch

Figure 16. GE-225 Arithmetic Registers

(ol maye
BlE- 228

ARITHMETIC UNIT, The arithmetic unit is a high-
speed, parallel, binary adder network. It serves two
functions. During arithmetic operations, it performs
the calculations specified by the gperation code in the
I register. It also serves as atransfer bus for words
moved between the A register and memory (via the M
register), and for the operand porticn of instructions
moving into the § repister.

Control Registers (Figurce 17)

1 REGISTER. The 1 Register is the instruction regis-
ter. [t contains all 20bitsofan instruction word during
the execuation of 4 computer instruction, While instruc-
tions are being processed, bits 0 through 4 indicate the
operation to be performed, and bits 5and 6 control the
automatic address modification, if required. During
the execution of instructions involving memory loca-
tions, bits 7 through 19 specify the memory address

involved. Bits 5through 19have other meanings during
the execution of general and shift instructions.

Instructions are read from memory into the M register
and set into the B register. From the B register, bit
positions 0 through 6, comprising the operation code
and the address modification bits, are transferred
directly into the I register for decoding. At the same
time, bit positions 7 through 19, the operand portion of
the instruction, are routed to the arithmetic unit, If
bit positions o and 6 indicate address modification, the
contents of the indicated X register are added to the
instruction operand inthe arithmetic unit and the modi-
fied operand is set into the I register. If no address
modification is indicated, the unmodified operandis set
into the I register.

X REGISTERS. X Registers. memory locations 0000

through 0003, are not actually registers, but serve
some of the same functions as do control registers,

: X Registers Address P Counter
| Decoding
Network 123, ., 000000 15
Core i
Slorage
I Re_Ez'ster
0123 . 0 0 v v v b v a e e e e a e v 4 s 14
-
r
«—n M Register B Register

Card Reader

Card Punch 8123 . @ e me e 15 P S O T 19
Controller

Selector
P i F
eripherals Parity
Check Arithmetic
Unit
A Register Q@ Hegister
B 123 . 0 s e e e e e e e e 18 S 123 . . 0 . e e e e 19
N “
Register
12. £

Console Typewriter
Paper Tape Reader-Punch

Figure 17. GE-225 Control Registers

|
u

(e
a1
a|
sy
[:\ L

e

These four memory locations are reserved to serveas
counters and for automatic address modification.

P COUNTER, The P Counter (or register)is a 15-bit
location counter that contains the memory address of
the next instruction to be executed, The contents of
the P counter are incremented by one before the exe-
cution of an instruction so that the P counter indicates
the next instruction in sequence. The Store P and
Branch instruction is anexception. The contents of the
P counter can be setiromthelregister when uncondi-
tional branching is specified by the program. The con-
tents of the P counter (the addressof the next instruc-
tion) are displayed by 15 lights on the control console.

BASIC OPERATING CYCLE

Program execution normally proceeds with instruc-
tions executed sequentially under the control of a 450
kilocycle crystal-controlled timer, This basic timing
device emits pulses every 2.25 micro-seconds. Eight

sequential pulses comprise the GE-225 operating cycle
of 18 microseconds, one word time, A word time is
the interval required to read a word from memory,
transfer it to the proper register(s}, and restore the
word in memory. Part A of Figure 18, Word Time
#1, illustrates the hasic read-write cycle.

Ia executing a program instruction, one word fime is
required to fetch an instruction from memory and
another (Word Time #2, Part A of Figure 18) is
normally required to fetch the operand specified and
perform the operation - a minimum of two word times
per instruction. Instructions indicating address
modification require an additional word time to fetch
the address modifier from the specified X register,
augment the original operand with the modifier,
and transfer the updated address to the appropriate
register. See Figure 18, Part B.

Some instructions require more thanone wordtime for
execution. Examples include double length word, mul-
tiply, divide, and shift instructions. The additional

A. Wo Addrasa Modification Racquiced

Word Time
1

[Fetch Instruction Word}

T Times

Word Time
42

{Fetch Operand Word & [Fetch Heaxt lnstructon Word
Execute Inatraction)

7o | T1{T2|T3| T4|T5| Te{17| TO{ 1| T2|T |74|rs|re|rt|r0|T1[T2| T3|T4 | TSITR T2

Word Time
Lk

Extraet Instruction 1 1
Word From Memory &
Tranefer Te M.

Transler Inptructlion
Word From W To B —]
Tel.

Re-Write [natructkon
Word In Memory —

Extract Data Word
From Memory &
Trareler To M.

Tranafer Data Word __Re-wme Data
To Appropriae
Reglater (5}

1 Same Ay 1 In
| Word Tlme #1

Same An 2 In
| Word Time 41

Same As 3 In
Wword Time #1
g

Ward In Memory

B. Address Modlflcatlon Required

1 Word Tima
1
[Fetch Inmruction Word)

T Times

Wora Time
LH
{Fetch Address Modilying

Word
to| 1| T2fra|Tafrs | 6|t2 |v0 | 1| T2| T8 74| TE{|T2 To|r1{rz|T3jra |rsbre 7| To|T1|T2 |r3| 74| T5|{TR]TT

Word Time Word Time
3 "
{Fetch Operand Word & Fetch Next [natruction Word}
Execute Inabruction}

Same AF 1 Above In
Word Tims #1

Same An I Above In
Word Time #1

Same A3 3 In Above
Word Time #1

Extract Modifier From
Memory & Transfer To M

Combine Modlier With
Addreas Portion O[1 &
Transfar Moditied Ad-
dreas To 1

Re-Write Modiflar
In Memory

Extract Duta Word From

To M | Re-Write Data
Mamory & Transler Tao Word In Mamory | Same As 2 [

Tranaler Data Word Word Time #1

Ty Appropriste Same As 1 In Same As 3 [n
Regleter (5) Waord Time 41 Word Time #1

Figure 18, Basic Timing for Single Length Word Operations

AT 62
Nella g 47
] LSJ yas)

35

word tines required are automatically provided by the
central processor sequence control logie,

Single word transfers from or to memory, including
instruction access time and not involving address
modification, require two word times; double length
word transfers require three word times, Execution
times for all instructions are included in the individual
instruction descriptions.

Sequencing

Instructions are normally executed sequentially. With-
in each operation eycle, the control logic of the central
processor provides sequence control for:

1. Fetching the instruction,

2. Moditying the operand address (if required),
and
3. Executing the instruction.

The sequence control causes repetitive performance
of this cycle automatically, thus permitting execution
of successive program instructions. In addition, by
monitering the execution of multiple~word-time in-
structions, the sequence control provides appropriate
control signals to make available the necessary word
times for execution before the next instruction iz
fetched from memory.

Operation Cycle, General

Instructions are executed sequentially, except when
decision instructions or priority or program interrupts
break the sequence and commence processing at an-
other point in the program. The operation eycle des-
cribed briefly in Sequencing, above, consists of two
phases: the instruction phase andthe gxecution phase,
thereby giving meaning to the term, instruction-exe-
ution cycle,

INSTRUCTION PIIAST,

three functions:

Tlie insiruction phase serves

1. To geeate the iustrection in memory and
trausler it i the T (instruction} regisier,

200 To Jocawe the dula i miemory as specitiod by
the instructivg operaanl sidilress,
Tocrtablish excoulioneontrol elreuits lor the

instruetion.

The instruction phaseis illustrated more clearly by the
flow chart in Figure 19, During this phase, an in-
struction is read from memory and storedinthe I reg-
ister. The operation code (bits 0 through 4) of the

instruction word are examined by the instruction de-
coding logic to determine the kind of instruction, that
is, branch, shift, arithmetic, ete. If necessary, the
remaining bits are also examined. This examination
established the necessary controls for directing pro-
cessing during the execution phase.

During the examination, the P counter is incremented
by one to contain the address of the pext instruction
in sequence. The control circuits agk, < is the instruc-
tion in the I register to be modified?” If yes, the
contents of the specified X register are read from
memory and added to the operand address in the
A register, then sent to the I register, If no, the
instruction is executed, When the central processor
is stopped manually, the P counter displays the address
of the instruction currently in the I register,

[Look up Instruction
and Store in the
I Register

1WT

Increment the
P Counter for
the Address of
the next

L Instruction

Is the Instructio
in the I Register
0 he Modified ?

W"

Execute the
Instruction

Modify
Address
1WT

No

1or
more
units

Figure 19. GE-225 Instruction-Execution Cycle

Naoimally, the instruction phase of allinstructions re-
quires the same amount of time: placing instiuction
in the I register and incrementing the P eomnter takes
one word time, Hewever, if the instruction is to he
maddifii d, ap additional word tioe is requived,

X ROUTION PHASE, Duarving the esceation phase the

central processor pert s the aeiion specified by the
operation code, Foreruauple,if the instructionis LDA
3200 (load the econtents of memor location 3200 into
the A register), the operand wtdiess in the T register
selects the proper control lines thronglh the address
decoding network tobring the contenis of memory loca-
tion 3200 inte the M repisterand, throughthe B regis-
ter and arithmeticunit, into the A register. Instruction
execution can require one or several word times,
depending upon the instruction,

36

The instruction-execution cycle is continuous in nor-
mal operation, As soon as the instruction phase is
completed, the central processor enters and completes
the execution phase, and another instruction phase is
initiated. The cycle is automatic as long as power is
applied to the system,

Operation Cycle, Detail

Three different kinds of memory access are required
to execute GE-225 instructions: one requires access
to memory under control of the P counter, another in-
volves control by an X register, and the third type of
access is controlled by the I register. The type of
access permitted during any word time is governed
by one of three flip-flop circuits as setby control logie:

1. AMP - A flip-flop in the sequence controller
that is used to Address Memory from the P
counter,

2. AMX - A flip-flop in the sequence controller
that is used to Address Memory from one of
the X registers.

3. AMI - A flip-flop in the sequence controller
that is used to Address Memory from the I
register.

Figure 20 is a flow chart depicting the operations
performed by the central processor while executing a

program. This diagram illustrates the nature of the
operations and tests performed during one complete
instruction cycle, including: 1) extraction of the in-
struction from memory (AMP), 2} modification of the
address portion of the instruction, if required (AMX),
and 3) the subsequent execution of the operation {AMI,
GIS, or AMX), GIS is a flip-flop in the sequence con-
troller that controls the execution sequence duringall
general instructions, hence General Instruction Se-
quencing, or GIS.

Program execution is accomplished by properly re-
peating the basic operating cycle until the program has
been completely executed. Program execution can be
interrupted at any time from the control console, in
which event the cycle stops immediately following an
AMP operation.

The symhols used in Figure 20 require some explan-
ation. Each circle containing alphabetic characters
represents an operation requiring one wordtime, The
abbreviations correspond to controlling flip-flops in
the instruction sequence control logic, Each smaller
circle containing an X indicates that the operation in-
volves memory access during the associated word
time.

Note, for a manual start, that the first instruction is
assumed already to be in theIregister. Upon depres-
sion of the Start butten, the firstactionis the stepping
of the P counter by one, in preparation for the next
sequential instruction.

If the instruction currently in the I register involves an
X register, the next operating cycle isan AMX access
eycle. Otherwise, the next cycleis eithera basic AMI
cycle or a general GIS cycle. Formai I instructions
require one or more AMI cycles for execution, After
each AMI cycle, the controllogic isinterrogated for an
end-of-execution condition, which (when detected)
turns on the EQO (end of operation) signal.

If the instruction is a general instruction, the next
eycles (if any) are oneor more GIS cycles (to complete
instruction execution) or two AMI cycles (for input-
output operations involving the controller selector).

In all cases, completion of instruction execution results
in the generation of the EQQ signal, whichinitiates an
AMP cycle for reading out the next instruction. Fur-
ther aetion at this point is contingentupon the position
of two switches on the control console: the Automatic-
Manual switch and the Stop on Parity Error switch.

If the Automatic-Manual switch is in the Manual posi-
tion, the processor halts, Otherwise, processing of the
next instruction is initiated, unless the Stop on Parity
Error switch is in the Stop positionand a parity error
has occurred during one or more of the memory access
cyeles of the previous instruction cycle or the just-
completed AMP cycle.

If a processor halt occurs for any reason, the address
in the P counter is the address of the instruction that
i held In the I register upon completion of the AMP
cycle preceding the halt.

s

End of Oy {E00} v End of Opeoation (E0P

X Look up the
st ruction
word B wtore
& In the §
Tagialsr

Load ‘Maral [# this & mhousl or 44
card | Hair Rularaatic Cperation.
Aotomatic
.ﬂ N Compata Address of
ncrement B Coonter By One{ Nexmt lnstruction

In Uhe iaptruchion in the | No
Bite b b 8 = 00

Roagrlator to be Modifted?

BraTEEA O,

L3
Wodily Dits Address Does Lg Exacullon require |Yes
.:g Bortion of inel ruction wie of an X Raglear?
Word, {(Ad I7- 10 To
@ X019 und place rawclt
I 15~ 18}, Wo

im Lb# instruction In the 1

Rugister A Ganeval
Instruction?

)

Tin

Executr Generul Instroition. @
E an npul /Quiput Instrodson,
Injtiste Execution Brocesy.

Haa the bewn

eompletely dweoued?

In &t an Input/Drutpat Mo
Imst ruction? .

00 Compists Brecution

Ko @ aof Insiruction.
Ho Dowd §t [nvolve the

Comtraller Sejector?

0 L & Branch Insiructon

whoé Branching Condltlon
wng ot matisdied?

Yeu

Treanater P Ta 1

T -

Bas the Instruction beon

Complwtety Exacuted?

(%) Trassmi 2od

Comniand Word
@ To Comtroller
uelaclor

@ General loairucton.

Incrément The P
Counter By One

Tranafer P To i

-
e

‘Tramamit 3rd
Command Ward

@ To Controller
Salectar

Increment The P
Couwntar By Onm

Figure 20. Flow Chart Showing Central Processor Operating Cycle

38

4. CENTRAL PROCESSOR OPERATIONS

GENERAL

Operations that occur within the central processor and
do not involve either direct input-output or controller
selector connectedperipheral devicesareclassifiedas
central processor operations. These operations are
further divided into five basic categories:

Arithmetic

Data Transfer

Shift

Internal Test-and-Branch
Address Modification

.

&b 00 B3

Within each category, all instructions are discussed
and presented in essentially the same format. Intro-
ducing each instruction, in General Assembly Program
(GAP) format, is the mnemonic operation code, the
operand field {if required), and the address modification
code, if the instruction can be automatically modified,
thusly:

ADD Y X

— T

Mnemonic Memory Address
Code Location Modification

The Y symbol is used to indicate that, for this instruc-
tion, the operand field refers to a memorylocation; Y
can be a symbolic or actual address. For instructions
requiring an operand other than an address, the symbol
K is specifiedin the heading. K has different meanings,
depending upon the instruction, and is explained inthe
description of the individual instructions. TheX sym-
bol indicates that the instruction can be automatically
modified, On the same heading line, the machine

language form of the instruction is given inoctal, fol-
lowed by the required execution time of the instruction
(including instruction read-out time):

ADD Y X ¢100000 Word Times: 2
Octal Execution
Instruction Time

Following the heading is the Functional Description of
the instruction, which details the effect of executing
the instruction, and one or more examples of instruc-
tion usage. Included in each example are the actual
GAP coding for the instruction and the contents of
the afiected registers before and after execution.
Normally, control register contents are not shown;
it can be assumed that, unless otherwise stated, the I
register will contain the instruction being executedand
the P counter has been stepped to the next sequential
address. In other words, only the effect of the instruc-
tion is detailed.

Algo, most examples are illustrated using data ex-
pressed in octal and using symbolic locations inorder
to provide familiarity with these forms. Octal is the
form in which most GAP print-outs are made; sym-
bolic locations are more convenient for the program-
mer to use than are the actual numeric locations.

=229

39

ARITHMETIC INSTRUCTIONS
sUB Y X 0200000 Word Times: 3

JI ADD Y X 0100000 Word Times: 2 . ..
Functional Deseription: SUBTRACT. The contentsof
location Y (8, 1-19) are algebraically subtractedfrom

Functional Description: ADD, The contents of memory the contents of the A register (8, 1-19). The result is
location ¥ (8,1-19) are algebraically added to the con- placed in A {8,1-19). Y is unchanged. Overflow is
tents of the A register {8,1-19). The result is placed possible.

in the A register (8,1-19). Yisunchanged. Overflow, GAP Coding:

discussed at the end of this section, is possible. _
Symbol Opr Operand X
|[2|3]4‘|5|5 ENEE lZIISi!4J‘|!|Iﬁ||?lIB||9 e
Example 1: Addapositive number 42189, (0122315g), L /S UBJ/AMT4# 2
located at GAF symbolic location AMT#% to the posi-
tive number 52630, (0146626p), which haspreviously Example 1: . Subtract the positive number 42189]2
been loaded into the A register. (0122315 }, located at GAP symbolic location AMT#
from the positive number 52630,q {01466268) whmh
GAP Coding: has been previously loaded inte the A register.
Symbol Opr Oparand X Register Contents in Qctal
1 PR a 5:6 q s |16 |z Iaila 14 [1617 | 18 | 19 |z2a
[I L*] l o el A Q
A DDIAMT # 2
Before execution: 0146626 ?
After execution:
Register Contents in Qctal 0024311 ?
A Q Example 2: Subtract the positive number 65421,
A 0177615g), located at GAP symbolic location AMT#3
Before execution: > { 8 y
l 0116626] L - | from the smaller positive number 52630, 0 (01466264}, .
After execution: I 0271143 L o which has been previously loaded into the A reglster
Example 2: Addanegative number4218910(36554638} GAP Coding:
located at GAP symbolic location AMT#3+1, to the S — '
positive number 52630, (0146626g), which is already Symbol L Operan X
intheAregister. |lz|3|4in[e NENEL lzlla||4i|s]lo|!|7||a|n 26
. _ISUB|AMTS#.3

GAP Coding: .
Register Contents in Octal
Symbol Opr Operand x A
II 2] a[4| HERE ENED |2]|3||4]l5=\ai|7lla||9 B Before execution: I 0146626 I E ? I
L ADD[AMT #.3 + .1

After execution: [3747011 I L ?]

Comments: Note that, when a larger number is sub-
tracted from a smaller number of like sign, the result

Register Contents in Octal is in complement form.
A Q
Before execution: | 0146626 || 7 | DAD Y X 1100000 Word Times: 3
After execution: L0024311 I | ? I
Functional Description: DOUBLE LENGTH ADD, If the

{modified} address of memory location Y is even, the

Comments: Note the use of relative addressing in the contents of ¥ {8,1-19) and Y+1(1-19) are algebraically
operand field of Example 2. AMT#3+1 isone memory added to the contents of register A (S,1-1%) and
location beyond AMT#3. Q (i-19). However, if the (modified) address Y is odd,

BE-225

40

the contents of Y (S, 1-19} and Y (1-19} are algebrai-
cally added to the contents of A{S,1-19) and @ (1-19).
The result is placed in A (S, 1-19) and Q (1-19). The
sign of the Q register is settoagree with that of the A

register, Y and Y+1 are unchanged. Overflow is pos-
sible.
Example 1: Add the positive number 821,695,

(0000001 1104677,), located at GAP symbolic locations
AMT#7T and AM T#B'I+1, to the positive number 52630010

(0000001 0003734g), which has been previously loaded
into the A and Q registers. AMT#7 is an even-num-
bered memory location.

GAP Coding:

GAP Coding:

Symbol
||z|a]4_|_nie

Opr Operand X

\2I|3||4]|511oin||s||n 2o

AMT# 9

a|a|1o

D AD

Register Contents in Octal

A Q
Before execution: [3777776 | | 3774044 |

| 3777795 | | 3141724 |

After execution:

Example 4: Addthe positive number 155,926,921 ,82810

Symbaol Operand X

|[z|3 4[:|e L |z'i|:j|alla||sin|!s|19 o

D ADAMT# 7

Register Contenis in Octal

Q
Before execution: I 0000001 _I I 0003734 J

(1104677 0001144g), located at GAP symbolic loca-
tions AMT#7+1 and AMT#7+2, to the positive number
5263001 (0000001 0003734g), which has been pre-
viously loaded into the A andQ registers. If AMT#7+1
is an odd memory location, the contents of AMT#7+1
are added to the contents of both A and @, and the con-
tents of AMT#7+2 are ignored,

GAP Coding;

After execution: | 0000002 | | 1110633

Example 2: Add the positive number 821,695;q
(0000001 1104877g), located at GAP symbolic loca-
tions AMT#7 and AMT#7+1, to the negative number
-526300, (3777776 3774044g), which has been pre-

viously loaded intothe A andQ registers. AMT#7 is an

Symbaol Cpr Operand X

Izllal |4[|5||e'§|?||a|n 20

AMT# 7 + 1

BRI

D A D

Register Contents in Qctal

even-numbered memory location. A Q
Before execution: | 0000001 | | 0003734]
GAP Coding:
After execution: 1104700 1110633
PROGRAMMER
QOpr rand
T aTy LT R T Fo DSU Y X 1200000 Word Times: §
1 2 3 4 4 e LI * I\ ZI !J elz
. {DADAMT#?"7

Register Contents in Octal

A
| 3777776

Before execution: l 1 3774044]

After execution: | 0000000 | | 1100743]

Example 3: Add the negative number -734288q
3777776 31456603], located at GAP symbolic loca-
tions AMT#9 and AMT#9+1, to the negative number
-526300,4 (3777776 3774044p), which has been pre-

viously loaded into the A and Q registers. AMT#9 is
an even-numbered memory location.

(GlE-229

Functional Desc¢ription: DOUBLE LENGTH SUB-
TRACT, If the (modified) address of memory location
Y is even, the contents of Y (8, 1-19) and Y+1 {1-19)
are algebraically subtracted from the contentsof reg-
isters A (8, 1-19) and Q (1-19). However, if the
(modified) address Y is odd, the contentsof Y (S, 1-18)
and Y (1-18} are algebraically subtracted from the
contents of A (S, 1-19) and @ (1-19}). The result is
placed in A (8, 1-19) andQ {1-19), The sign of Q is set
to agree with the sign of A, ¥ and Y+1 are unchanged,
Overflow is possible,

Example 1: Subtract the positive number 52'630010
(0000001 00037344), located in GAP symbolic locations
AMT#%6 {even) and AMT#6+1, from the positive number

821695) (0000001 1104677g) which has beenpreviously
loaded into the A and Q registers.

41:

GAP Coding:

Example 2: Add one to the negative number -42189,

Symbol Qpr Operand X
|I2 N B 12[13||4I|5J|6-‘|7||a||9 zo
DS UAMT# 6§

Register Contents in Qctal

A Q
Before execution: l 0000001]I 1104677 _I

| ooooooo | | 1100743]

After execution:

Example 2: Subtract the positive 155,926,921,828,4
{1104677 00011448}, located in GAP symbolic locations

(3655463g), which has been previously loaded into the
A register.

GAP Coding:
Symbol Opr Operand X
|[z|aJ_AIaJe NEREE 121 #3 14—1—‘!|luil7lla 1a | 20
. A DO

Register Contents in Octal

A Q
Before execution: | 3655463 | [2 |

AMT#6+1 (odd) and AMT#6+2, from the positive number After execution: 3655464 ?
155,927,218.624, ; (1104677 1104700g), which hasbeen
previcusly loaded into the A and Q registers.
SBO 2504112 Word Times: 3
GAP Coding: : s
= e Functional Description: SUBTRACT ONE. Plusoneis
Symbol Opr Operand X algebraically subtracted from the contents of the A reg-
" 2]] 4] c{e]e e itojrz]ta]iafus]ie]1z]srgrsa]zo ister (bit position 19). If the capacity of the A register
DSU|IlAMT # 6 + 1 is exceeded, overflow occurs.
. . Example 1: Subtract one from the positive number
Register Contents in Octal ZXample 1o P
g 65421 (0177615g), which has been previously loaded
A Q into the A register.
GAP Coding:
Before execution 1104677 1104700 Al Loding:
Symbol Qpr Operand X
After execution: 0000000 0000001 |[2 | z| 4] 5| HENEREE lz[!z |4]|a||sinlla|19 20
§B O
Register Contents in Octal
ADO 2504032 Word Times: 3

Functional Description: ADD ONE. Plusoneis added
algebraically to the contents of the A register (bit
position 19}. If the capacity of A is exceeded, overflow
oceurs.

Example 1: Add one to the positive number 52630,
(014662635, which has been previously loaded into the
A register,

GAP Coding:

Symbol Qpr

T T T
|[z|_3|415|u L] % ., th IZ-_

L . |A D O

Cperand X

!-sjn]ls'lleinllalw a6

Register Contents in Octal

r—

Before execution: | 0146626 || 2

[0146627 [2]

After execution:

M|

2=
i

Q@
|
o | L 2 |

Example 2: Subtract one from the negative number
-65421 (3600163g), which has beenpreviously loaded
into the A register.

Before execution: [0177615

After execution:

GAP Coding:
Symhbol Qpr Operand X
|[2|3|4|5in ENED 'ﬂ"i"]"l'“i'””l'“ it
L . N S .E ,0
Register Contents in Octal
A
Before execution: | 3600163 | R |

After execution: l 3600162 J I ? I _

RS
[Ny
L’ 1

=2

42

MEY Y X 1500000 Word Times: 9to23

DvVD Y X 16000060 Word Times: 26 to 29

Functional Description: MULTIPLY, The contents of
memory location Y (5,1-19) are algebraically multi-
plied by the contents of the Q register (8, 1-19). The
product is placed in registers A (S, 1-19) and Q (1-19).
The sign of Q is the same as the sign of A after mul-
tiplication. If the contents of A are not set to zero
hefore MPY, the contents of A are added algehraically
to the least significant half of the product, thus permit-
ting evaluation of expressions of the form AB+C.
Overflow is possible.

Example 1: Multiply the positive number 5263049
{0146626g) in GAP symbolic location AMT#1 by the
positive number 42189y (0122315g) in the Q register.
The A register contains zeros.

Functional Description: DIVIDE, The contentsof reg-
isters A (8, 1-19) andQ {1-19) are algebraically divided
by the contents of location Y (8, 1-19). The quotient is
placed in A (8, 1-19); the remainder is placed in
@ {1-18). The sign of the remainder (Q) is the sign of
the quotient (A), For proper division, the absoclute
magnitude of the divisor (Y) must be greater than

the magnitude of the contents of A, otherwise over-
flow occurs,

Example 1: Divide the positive number 524220,
(1'?7'?6?485 in the @ register by the positive number
526304 {01456268) in GAP symbolic location AMT#1.
The A register contains zeros,

GAP Coding: GAP Coding:

Symbol Qpr Qperand X Symbol Qpr Operand 4
‘1z|’i‘_i_5i° N ‘21‘3!L“|”l”i”|”l‘g 20 1 zla|4]uia INIENEE lz[lal|4]|ﬂ|ls|l7|lalln 20
. MP Y AMT # 1. L D VDIAMT# 1

Register Contents in Octal Register Contents in Octal
A ' Q A Q
Before execution: L 0000000 | | 0122315 | Before execution- L 0000000 | 1 1777674 J
Decimal Arithmetic

Example 2: Multiply the positive number 526304
Z01466263) in GAP symbolic location AMT#1 by t}‘le
positive number 418,254, 5(146071863) in the Q register.

The A register contains the positive number 37855,
(0112103).

GAP Coding:

Symbol Opr Qperand X

-
o

|[z1 s] 4'] I EREREL 121|3]ulul\einlu|n

MP Y{AMTG# 1

! N L

L . " . N i

Register Contents in Octal

A Q
Before execution: 0112103 1460716
After execution: 0122001 1754367

In business applications, data tc be processed is
often recorded externally in the BCD format. To
process such data in a binary computer requires
conversion of data from BCD to binary, computation
in binary mode, and subsequent reconversion to
BCD format for externaluse, '

The decimal arithmetic optioual feature* provides the
GE-225 with the capability of performing addition and
subtraction of BCD data directly in the decimal mode,
thereby eliminating the need for converting and recon-
verting data.

A GE-225 with the decimal arithmetic feature normally
operates inthe binary mode. Operationis shifted to the
decimal mode only by executing a SET DECMODE in-
struction, and ecan be returned to the binary mode by
executing 2 SET BINMODE instruction or depressing

* Part of the optional group which includes additional
modification word groups and the three-way compare
instruetion.

Bl=- 225

43

the Power On switchon the control console. The initial
power on sequence automatically sets the GE-225in the
binary mode.

Rather than providing entirely new instructions and
mnemonics, the decimal arithmetie feature modifies
the executionof the following existing binary arithmetic
instructions:

Sinple Add ADD
Single Subtract SUB
Add One ADO
Subtract One SBO
Doubie Add DAD
Double Subtract DSy

All other GE-225 instructions are unaffected andcon-
tinue to be executed as they are in the normal binary
mode. Indexing is performed in binary regardless of
the mode set.

In decimal mode operations, affected GE-225 words
are considered to consist of three decimal digits as
shown:

51 4 7 10 13 18 19

ololoojoo1ofoolooaoloofooio

:

Bit positions 4 through 7, 10 through 13, and 16 through
19 are used to express decimal digitsin standard BCD
format. Decimal guantities greater than 99% are ex-
pressed by using two or more 20-bit words.

The sign of the decimal number is in the § position of
the word containing the most significantdecimal digit;
a 0-bit designates a positive decimal number, while a
1-bit indicates a negative quantity.

Zone bits of each BCD character{2and3, 8 and 9, and
14 and 15) contain 0-bits and do not enter into arith-
metic operations.

The decimal word containing the mast significant (high-

order) digit must be marked or flagged to define the
end of the decimal field by placing a 1-bit in bit posi-
tion 1.

Thus, the decimal quantity +979989 would appear in
memory as two words of three digits each:

Memory Location Y

51 4 7 10 13 16 19

[oJi]o ofs 0 0 1]o ofo 11 1o 01 9 (,)_1/]
R

End of Field
Flag

Memory Location Y+1

lololoolioo1jooliooafoofioot]

v T

g 8

The programmer should flag each BCD number prior
to arithmetic operations by coding which sets a 1-bit
into bit position 1 of the most significant word of each
guantity. Sample coding to accomplish this is shown
under Program Insertion of End-of-Field Flag.

Besides defining the length of the decimal number, the
end-of-field flag affects the disposition of carries
generated during arithmetic operations. A carry out
of the most significant digit position of a word is re-
membered if the word does not contain an end-of-field
flag, The carry is remembered either until the next
decimal instruction is executed or the Clear Alarmis
depressed.

If the end-of-field marker is set{a1-bitin position 1},
then a carry out of the most significant digit position
causes overflow, which turns onthe overflow indicator
and reverses the sign of the most significant word of
the decimal humber.

The end-of-field flag isnot essential for bothquantities
involved in a decimal operation; only the high-order
word of the quantity loaded into the A register must
be so marked. If the field in memory is flagged and
the field in the A register is not, an error condition
occurs., If both fields are flagged, the effect is the”
same as if only the A register wereflagged. A flag in
the A register field automatically generates an end-of-
field flag for the result field.

Negative decimal numbers must be expressed in the
10’s complement form before decimal operations. The
1¥s complement is formed automatically by subtract-
ing the decimal numbver from a decimal zero (delimited

b= 225

44,

by an end-of-field flag in bit position 1) while in the
decimal mode. Negative resultsof decimal operations
also appear in the 10’s complement form. Thus, the
decimal number -222222 would be converted to
-777,778 (1,000,000 - 222,222} before being used in
arithmetic operations.

DECIMAL ARITHMETIC INSTRUCTIONS

ADD Y X 0100000 Word Times: 2

Functional Description: DECIMAL ADD. The contents
of Y (3 BCD digits, S,4-7,10-13,and 16-19) are alge-
braically added to the contents of the A register (bits
8, 4-7, 10-13, and 16-19). The result is placed in the
A register (bits 8, 4-7, 10-13, and 16-19).

Example 1: Decimal add the gquantity +333 in sym-
bolic location INCR to +444 which has beenpreviously
loaded intc the A register, Assume that the central
proceszor is operating in the decimal mode, by a
prior SET DECMODE instruction,

GAP Coding:
Symbal Opr Operand X
- Y —
__Ez,s 4 s *J‘i_‘_“__‘j"-_‘?_l_f‘l'°|‘°I"|”’|‘° 20
. A.DDI|[INCR,
Memory and A Register Contents in BCD
, A INCR .
Before execution: +14 |4

a|l [+]3]3]3

After execution: + 7177

i+333

Example 2: Decimal add the quantity -333 in symbolic
Jocation NEGN to +444 which has been previously loaded
into the A register. Assume thatthe central processor
is operating in the decimal mode.

GAP Coding:
Symbol Opr Qperand X
|l2|3:41|sio i e |18 lzl”l“}“,i”i”|”}” 4
. A DDINEGN

Memory and A Register Contents in BCD

A NEGN
Before execution: 414 4 -6l 8|7
Alter execution: +11(1]1 -6l 8|17

-/

B

SUB Y X 0200000 Word Times: 3

Functional Description: DECIMAL SUBTRACT. The
contents of Y (bits S, 4-7, 10-13, and 16-19) are alge-
braically subtracted from the contents of the A reg-
ister (bits 8, 4-7, 10-13, and 16-19). The result is
placed in the A register (bits S, 4-7, 10-13, and 16-
18}.

Example 1: Decimal subtract the quantity +333in sym-
bolic location DECR from +444 which has been pre-
vipusly loaded into the A repister. Assume that the
central processor is operating in the decimal mode.

GAP Coding:

Symbrol

I R L

N .

Operand

l_l‘i

[ENEEE
Aot

Memory and A Register Contents in BCD
DECR

pannjannn
BRDpjannn

Before execution:

After execution:

Example 2: Decimal subtract the quantity -333 in
symbolic location NEGN from +444 which has beenpre-
viously loaded into the A register. Assume that the
central processor is operating in the decimal mode.

GAP Coding:
Symbol Opr Operand X
1 2'314[5[0 [NENEE lzI|3|!4L|5|lel|?_lla|ll o
- . S UBNEGN |

Memory and A Register Contents in BCD

Before execution: + 141414 -|8)611T

After execution:

BE=994
Ay |
k% (S5 ¢

.

45

DAD Y X 1100000 Word Times: 3

Functional Description: DOUBLE DECIMAL ADD. If
Y is even, the contents of ¥ (8, 4-7, 10-13, and 16-19)
and Y+1 {4-7, 10-13, and 16-19) are algebraically
added to the contents of registers A (3, 4-7, 10-13, and
16-18) and @ (4~7, 10-13, and 16-19). If Y is odd, the
contents of Y (8, 4-7, 10-13, and 16-19) and Y (4-7,
10-13, and 18-19) are added to registers A (S, 4-7,
10-13, and 16-19) and @ {4-7, 10-13, and 16-19), The
result is placed in registers A and Q.

Example 1: Double decimal add the quantity +123456 in
symbolic locations POSN and POSN+1 to the quantity
+543210 which has been previously loaded into the 4
and Q registers. Assume that POSN isan even mem-
ory address and that the central processor is operating
in the decimal mode.

GAP Coding:

_&mbel . Ope] Operand K
T A A R
o .D.A DiP..O sN_

Memory and A and Q
Register Contents in BCD
Before execution: A Q _
+ 51 4 l3j 211 OJ
POSN POSN+1
+|1]2]|3 4|15 |6

After execution:

A Q
[+]efefe] [JeJele]

Memory and A and Q
Register Contents in BCD

Before execution: A . Q
NI 2{1]0]
PREP PREP+1
I 1
+ (112 3_. 4|5 6_J
After execution: A Q
+161616 31313
PREP _ PREP+1
Tl 213 [Telsle
DSy Y X 1200000 Word Times: 5

Functional Description: DOUBLE DECIMAL SUB-
TRACT. If Y is even, the contentsof Y (S, 4-7, 10-13,
and 16-19} and Y+1 (4-7, 10-13, and 16-19) are alge-
braically subtracted from the contents of registers A
{5, 4-7, 10-13, and 16-19) and Q {4-7, 10-13, and 16-
19}, If Y is odd, the contents of ¥ (S, 4-7, 10-13, and
16-19) and ¥ (4-7, 10-13, and 16-19) are subtracted
from the contents of registers A (8, 4-7, 10-13, and
16-19) and Q@ (4-7, 10-13, and 16-19). The result is
placed in the A and Q registers.

Example 1: Double decimal subtract the quantity
+123458 in symbolic locations DECR and DECR+1 from
the quantity +543210 which has been previgusly loaded
into the A and @ registers. Assume that DECR is an
even memory address and that the central processor
is operating in the decimal mode,

POSN POSN+1 GAP Coding:
+111213 415118 Symbal Opr Cperand 1_
|!2|3 4[5'o glslla ‘2|T|a I4||B||n||?lla|]9 2_.3.4
Example 2: Doubledecimal add the quantity +123456 in . (DS UIDECR e
symbolic locations PREP and PREP+1 to the quantity

+543210 which has been previously loaded into the A
and @ registers. Assume that PREP isan odd memory
address and that the central processor is operating
in the decimal mode.

GAP Coding:

Symbol

||2!3i4-[5i6

Opr

ﬂlnllf.‘

DAD

Operand X

lz]l.3| LIE NI

RCIEHRINTTIE

5

PREP

Memory and A and Q
Register Contents in BCD

A Q
Lelsfafs][Ja]1]o]

DECR DECR+1

[~{]zfs] [{4]s]¢]

Before execution:

45 .

After execution:

Example: Add a decimal one to the quantity +832 in

A Q
Lelafalo] [{olsia]

DECR
|+ |1 |2

DECR+1

3] [Jals]e]

Example 2: Double decimal subtract the quantity
+123456 in symbolic locations NEGR and NEGR+1 from
the quantity +543210 which has been previously loaded
into the A and @ registers. Assume that NEGR is an
odd memory address and that the central processor
is operating in the decimal mode.

GAP Coding:

Syinbal Operand X
CoT T T T T e T e T e e e s e T | e

NEGR,

T

Memory and A and @
Register Contents in BCD

A Q
Ledslals] [T2{1]o]

NEGR+1

Before execution:

NEGR

e lafefs} [le]s]e]

After execution: A Q
+ {4 (2 0| o(8|7
NEGR NEGR+1
+ |1 [g 3 4|5]8
ADO 2504032 Word Times: 3

Functional Description: ADD ONE DECIMAL. Oneis
algebraically added to the contents of the A register
(4-7, 10-13, and 16-19}. If the capacity of & is ex-
ceeded, the overflow indicator is turned on. This
instruction operates properly only on decimal words
of three digits or less.

the A register.

GAP Coding:

Symbal Opr . Ogerand
. ... lADO
_ Register Contents in BCD
A

Before execution: +18ls 21

I
After execution: + 181313
SBO 2504112 Word Times: 3

Functional Description: SUBTRACT ONE DECIMAL,
One is subtractedalgebraically from the contents of the
A register {4-7, 10-13, and 16-19). If the capacity of
the A register is exceeded, the overflow indicator is
turned on. This instruction operates properly onlyon
decimal words of three digits or less.

Example: Subtract a decimal one from the quantity
-763 in the A register. Assume thatthe 10’s comple-
ment of -783 has already been formed.

GAP Coding:
Symbot Opr Operand X
vy e . al 4] sy a]a e IzilaLl4||s]le|l?L\u||n 24
, S B Ol]
Register Contents in BCD
A
Before execution: -l 2|37
After execution: -lalsls

MODE CONTROL INSTRUCTIONS

SET DECMODE 2506011 Word Times: 2

Functional Description: SET DECIMAL MODE causes
the arithmetic commands ADD, DAD, SUB, DSU, ADO,

blE-228

47

and SBO to be executed inthe decimal mode. No other
commands are affected.

SET BINMOLE 2506012 Word Times: 2

Functional Description: SET BINARY MODE causes
the arithmetic commands ADD, DAD, SUR, DSU, ADQ,
and SBO to be executed in the binary mode. No other
commands are affected.

RELATED CONSOLE CONTROLS

1. Power On Switch. Depressionof this switch at any
time sets the central processor into the binary mode
of operation.

2. Clear Alarm Switch. Depression of this switeh
removes any carry resulting from uncompleted deci-
mal operations and prepares the decimal controls for
a new sequence.

PROGRAM INSERTION OF END-OF-FIELD FLAGS

To designate the beginning of a decimal field, a 1-bit
is inserted into bit position 1 of the high-order word of
the field. A typical method of accomplishing the hit
ingertion is:

Comments: The QCT 1000000 places the flag constant
in storage; LDA MILL and ORY DECW insert a 1-bit
into bit position 1 of DECW (the high-order word).

TEN'S COMPLEMENT FORMATION

Preparatory to decimal arithmetic operations, nega-
tive decimal gquantities must be converted to 10’s com-
plement form. One method for so doing is:

GAP Coding:

Symbol Qpr Operand ln X
FENERNENENEY DSEID IS DRI RERA EA
M I L L 0CT|1 000000 .

) LDAMI L L =

orylpDECW_ _ __ |
DECW Contents
in Binary
Before

execution: | 0]ojooolo10loocfoiolocolol o]
I — e — —

+ 2 2 2

After
execution: |0]1lo0olo1ofooojo10fooo]o10]
kw-‘-J \'_\/—/

+ 2 2 2

End-of-Field Flag

GAP Coding:
Symbo! Opr Operand ‘ X
B PESRENES PR EE D K EC IR LERE
MI.LL 0. CTH1 000000
O C T|0O O G 0,00 0,
DLDMILL . i
DSU|INEG.D .. !
DST(COMP . j-
Memory Contents
in BCD
NEGD and NEGD+1: | *]3[2]5 4)1]6
COMP and COMP+1;
(atter execution) - (874 5|84

PROGRAMMING DECIMAL OPERATIONS

The GAP listing below illustrates the fundamentals of
performing arithmetic operations in the decimal mode.
Address location 01750 contains the end of field marker
to be inserted in the two BCD numbers before addi-
tion. In theory, both numbers need not contain a flag;
onily the number in the A register must have the
marker., However, it is a good practice to flag all
numbers to be used in decimal arithmetic operations.
Memory locations 017536, 01757 and 01760 contain the

commands for flagging the BCD numbers.

Command 01761 converts the internal operation of
the computer to BCD prior to the addition and com-
mand 1765 restores the computer to the binary mode.

G- 225

GAP Listing

01750 ORG 1000
01750 1000000 MILL OCT 1000000
01751 0000000 acT 0000000
01752 0020202 Al ALF 222
01753 0020202 A2 ALF 222
01754 004 0LOokL Bl ALF hh4
01755 ooLohoL B2 ALF &4ii
0175€ 0001760 START LDA MILL
01757 2301752 ORY A1l
01760 2301754 CRY BI
01761 2506011 SET DECMODE
01762 1001752 oLD Al
01763 1101754 DAD BI
01764 1301604 0ST 0900
01765 2506012 SET BINMODE

The printout of the memory addresses used in the
program shows that locations 01752 and 01754 con-
tain flags in the words containing the most significant
digits. Locations 01604 contains the sum which also
is automatically flagped.

Printout
: -
o160k & 01605
DOOOGYT 2516006 2600002

BOII0 OOGOD00 BOOO000
D00 0000000 0000000 DO0000D QORO00D DO
00280 DOBOGGS FODIT?T O7OOOMD O7OODWD | 070000 QIODCGAD DMRQLO 070000
M40 QTOOoAG DFOOALO OTO00MD O7000LO | 070000 QTOODLD OFOQOLO O7000MD
OIB00 QIO0QLD QPOO0LD OT00OLG QTODOL0 [+] 1] DOEOEDE Q7000 DFOOOMD
1610 QFO00L0 O7QG0KG HIO0DOLG OIODOLG O7000LG OFOO00MD OTONNRG DFOQOLA
01780 1000000 coddeoe (1020207 0020103 0001750 2301758
DIY60 230175k 2506011 oM e 1301804 2906013

01752 91754

& E

01753 01755

Overflow

During arithmetic operations, the result of the cal-
culation can exceed the capacity of the 20-bhit A
register. When this happens, the register overflows
(ioses a bit from the high-order position). This is
known as an overflow condition.

The A register can also overflow asa result of double
length word caleculations. For a divide instruction,
register overflow can occur when the magnitude of the
divisor is not greater than that portion of the dividend
in the A register. An overflow condition alsc is pos-
sible when an attempt is made to negate {execute a
NEG instruction) the largest possible negative number.

When anoverflow condition arises, three things happen:
1. The sign of the result is reversed.

2. The most significant bit of the result (in bit
position 1) is lost, and

3. The overflow indicator on the control con-~
sole is turned ON.

The reversal of the sign hit in the A register causes
the overflow indicator to turn ON, regardless of the
type of instruction causing overflow.

Register Capacity. The A register can hold any num-
ber consisting of 19 numerical bits (bits 1through 19
plus the sign bit (bit 0). Thus, it is possible to rep-
resent a maximum positive number of 524,287, and
a maximum negative number of -524,288; Lefore
overflow could occur. These two numbers, Wwith their
binary equivalents are shown below:

8

012345678910111213141516171819

01111112111 1111111111

Maximum Positive Number = +524,28710

S

012345678910111213141516171819

1000000000 0 0O O CO0OO0OO0OO0O0GO0

Maximum Negative Number = —524,28810

The addition of any number, except 0, to the largest
positive number causes an overflow of a 1-bitinto the
sign bit position, thereby reversing the sign.

As shown, the maximum negative number consists of
a 1 bit in the signbitposition followed by all zeros. It
is incorrect to consider this configuration asa ‘minus
zero;’ it is —524,28810. An attempt to negate the
largest negative number (with the NEG instruction)
results in overflow: all the bitpositionsare reversed,
giving the ’s complement, and when one is added to
form the 2's complement, aone is carriedinto the sign
bit position. It can be seen that, although bit 0 indi-
cates the sign of the number (0 = plus; 1 = minus), all
twenty bits are involved in arithmetic operations.

The specific conditions for overflow are summedup in
the following paragraphs. Overflow for each kind of
arithmetic operation is illustrated by examples.

Addition Overflow. The overflow indication cccurs
during the addition of two positive numbers when there
is a carry from the most significant bit position (bit
position 1) to the sign bit position. No overflow indi-
cation is possible during the addition of numbers with
unlike signs. The overflow indication oceurs during
the addition of two negative numbers when there is a
reversal of the sign hit position.

£- 228

(e

49

Example 1: Add the contents of symbolic lacation
AMT#1 (0146626g} to 1777674g, which has previously
been loaded into the A register.

Example: Subtract the negative number in symbolic
location AMT#3 (-65421,g or 3600163g) from the posi-
tive number 5242205, which has previously been
loaded into the A register.

GAP Coding:
GAP Coding:
Symbol Opr Cperand X
,fz|3|4|5;s. R lzlla|l4[|5]luil?lia||5 20 Symbol Opr Operand X

L _ /ADDAMT %1

Register Conients in Octzl

A
Before execution: 1777674 ?
Alter execution: 2146522 ?

Example 2: Add the contents of symbolic location
AMT#2 (-524288,4 or 2000000g) to -1, which haspre-
viously been loaded into the A register.

GAP Coding;

Symbol Opr QOparand X
1_[253]415;5 a|a||0 l?]l:|l4J:|16iHlla||-; FL]

ADDAMTS# 2

Register Contents in Octal

A Q
s || 2]
|

]

Before execution

|
After execution. | 17777717 —I

Comments: Note that, in both examples, the sign bit
of the A register is reversed. In example 1, initially
the sign bit position and bitposition 1 contain 01; after
addition, these positions contain 10. In example 2,
initially the sign bit and bit position 1 contain 11; aiter
addition, these positions contain 01.

Subtraction Qverflow. In subtraction, the 2’s comple-
ment of the subtrahend is added to the contents of the
A register. The rules for overflow which apply to
addition also apply to subtraction.

|12|3i4]5|a s = to |z?||zj'n]ls|lnin|:s||g z0

, IS UBJAMT # 3

Register Contents in Octal

A Q
1777674 L ?

Before execution:

After execution: 2177511 »

Comments: Note that this subtraction is performed

by adding the 2’s complement of 3600163g {0177615g)

to 17776745, Overflow occurs when the signbit changes
from 0 to 1.

Multiplication Qverflow. The overflow indication oc-

curs in multiplication only when there isanattempt to
multiply the maximum negative number by the maxi-
mum negative number (-219 x -219). The overflow
indicator on the control console is automatically turned
off prior to execution of a multiply instruection.

Example: Multiply -524,288y4 in symbolie loecation
AMT#7 by -524,2881p, which has previously been
loaded into the @ register.

GAP Coding:

Symbol Opr Operand X

|[z|3|4]5ib B o (19 [12]T1s; saits[de 17 1| ta |20

MPYAMTG®# 7

Register Coniends in Octzl

B . Q
Beiore execution: 0000000 ! 2000000
After execution: 2000000 2000000

Bk 228

Division Qverflow. Forproperdivision, the magnitude
of the divisor must be greater than the magnitude of
that portion of the dividend in register A. If not, the
overflow indication is turned on and contrel is trans-
ferred to the next instruction in sequence. The over-
flow indicator on the control console is automatically
turned off prior tothe executionof a divide instruction.
Also, overflow will occur if division results in a
quotient that exceeds the capacity of the A register.

Example: Divide the positive number 17,338,832, 32910
(0100457 03127118), which has been previously double

loaded into the A and Q registers, by 20,0004
(00470409) in symbolic location WRDS.

GAP Coding:

Symbol Operand X

|2[|si|4]ls|lein|la||v z0

WRDS.

o

||a|3i4[5[u a9 1

D VD

L _ —_

Register Contents in Octal

A
| 0100457 || o312 |

Before execution:

after execution; I 0201136 —II 0625622 I

Scaling

The movement of the decimal point to the right or left
to properly align numbers is called ‘scaling’ or ‘deci-
mal positioning.” Before decimal numbers can be
correctly added or subtracted in the central processor,
the number of places to the right of the decimal point of
both numbers must be the same. Forexample, to add
3.0 to 4.16, 3.0 is arranged to correspond to 3.00 and
then added to 4.18. If the decimal point is moved to the
right in preparation for calculations, the number is
‘scaled to the right;’ if the decimal point is moved to
the left, the number is ‘scaled to the left.’

When two numbers are multiplied, the number of places
to the right of the decimal point in the product is the
sum of the places to the right of the decimal point in
both the multiplier and the multiplicand. If it is de-
gired to scale the product (which is expressed as a
binary number} for subsequent calculations, the pro-
duct must be divided by a constant that is the binary
equivalent of an appropriate power of 10.

To further illustrate the concept of scaling, consider
the example of adding the following two decimal num-
bers:

24.4
+13.25
3%.65 Desired sum

Because the central processor does not recognize
decimal points in arithmetic operations, the binary
equivalent of 24410 and 132510 would appear in memory
as shown in Figure 21.

012345678910111213141516171819

colooofco0co 00 1 111 1 0|1 C O

gojoogco0oO0r 01 O 01 O 1|1 0 1

= 24410 and 132510

Figure 21. Twa Numbers in Memory before Scaling

When these two numbers are added, the result would
appear in the A registeras1569;q (Figure 22). This,
of course, is incorrect, for the desired sumis 37.6510,

012345678910111213141516171818

0000000001 1 0 0 0 100001

= 15694

Figure 22, Incorrect Sum after Addition without
Scaling

To obtain the correct sum of 37.65,, it i5 necessary
to scale the augend 244, to theleftone decimal posi-
tion by multiplying 2444 by 10y4- Through multipli-
cation, 244y, becomes 244019 and thusis scaledto the
left so that the decimal points in the two numbers are
properly aligned. After scaling, the two numbers are
aligned as shown in Figure 23.

01234567891011121314151617 1818

ogQ|o00f00OO|10 0|1 1 0)]0 O 1|0 C O

golooojoooOjo1l Oj1 0 O|2 O 1{1 O 1

Figure 23, Numbers in Memory after Scaling

Ble-225

51

Because the two numbers are now properly aligned, the
correct sum of 37.851¢ is achieved when the numbers
are added.

Note that scaling operations can be accomplished in
one of two ways: (1) by multiplying or dividing by the
binary equivalent of the appropriate power of 10, or
{2) by using GE-225 scaling routines available to the
programmer.

Rounding

After a calculation has been completed, itis sometimes
necessary to round the result to the next highest
integer. ‘Rounding’ is accomplished by adding a ‘5’
into the decimal position to the right of the position
to receive any carry. Since all calculations, within
the GE-225 are performed primarily with binary
numbers, the proper rounding factor of ‘5’ is expressed
in binary and is carried as an appropriate constant
within memory. For example, this constant might be
programmed by using the pseudo-instruction DEC to
obtain the binary equivalent of 5. The instruction
would e DEC 5 See the GE-200 Series General
Assembly Program II reference manual, CPB-1180
for detailed discussion of pseudo-instructions. After
the rounding factor is added, the positions to the right
of the digit which receives any carry can be deleted
through scaling,

To illustrate further, assume that the decimal 10.75
is to be rounded to the nearest tenth. By using a
rounding factor of .05 stored as a constantin memory,
the desired result, 10.80, is achieved by adding the
rounding factor as shown in Figure 24.

'012345678910111213141516171819

l.{fo0j000COO001 OO0 0 0|1 1 0]C 1 1

2.|00loo0looojc0 0|0 © 0|0 O Cl1 O 1

's.loolooolooolo1r olo 0 oft 1 1|0 0 0

where 1 = 10.7510
2= .0510

3= 10.8010

Figure 24. Using a Rounding Factor of .05

GE-229

DATA TRANSFER INSTRUCTIONS

Data transfer instructions are grouped into two major
categories: memory transfersand register transfers.
Although not involving a true transferof data, register
modification instructions are alsoincludedin this sec-
tion.

Memory transfers involve word movement between
core memory and central processor registers. In
general, the previous contents of the ‘receiving’ unit
{memory location or register) are replaced by the
transferred word, while the transferredword remains
unchanged in the original memaory location or register.

Arithmetic register transfers involve the transfer of
information between registers; the condition of the
register initially holding the information is unchanged,
after execution, except as noted in the discussion of
each instruction.

Register modification instructions change the contents
of the specified register in a predetermined manner,
such as complementing, sign changing, and negating.

Data transfer instructions involve either or both the
A and Q registers. In general, transfer instructions
cause parallel transfers (all bits simultaneously),
rather than serial transfers {a bit at a time).

Data Transfers-Memory

LDA Y X 0000000 Word Times: 2

Functional Description: LOAD A REGISTER. The con-
tents of memory locations Y (8, 1-19) replace the con-
tents of the A register (8, 1-19). Y is unchanged.

Example 1: Load the A register with the contents of
GAP asymbolic location AMT#1, which contains the
positive number 526301((01466285). The A register
initially contains zeros.

Symbaol

T
|z|s|4]n|e

Opr

Bln|1o

L DA

Operand X

\2I|3||4]lallui|?|:n||n 20

AMT 4 1

Register Contents in QOctal

A Q
Before execution: 0000000 ? J
After execution: 0146626 "

52

Example 2: Load the A register with the contents of
GAP symbolic location AMT#5, which contains the
negative number -4218% (36554635). The A register
initially contains 42189¢ {0122315p).

GAP Coding:
Symbal Opr Oparand X
|[z|z ..[g|e B % 1D |2:':3l|4]|a|lsi|?||a||o 20
L DAIAMT#5 ,
Register Contenis in Octzl
A

Before execution: 122315 ?

After execution: 3855463 ?

DLD Y X 1000000 Word Times: 3

ExamEle 2: Double length load the A and @ registers
w

Tth the positive number 526300, (0000001 0003734g)
in GAP symbolic locations AMT#6 {odd) and AMT#6+1.

GAP Coding:
Symbol Opr Operand X
|]2|a:nls[a INEEE 'i]_‘ﬂ_"l—"l"‘i”l"’l” 20
, IDLDIAMT# 6

Register Contents in Octal

A Q@

Belore execution: ? ?

After execution: 0000001 0000001

Comments: Note that, if the specified operandaddress
is odd, the contentsof that address areloaded into both
the A and @ registers and the second address is
ignored.

Functional Description: DOUBLE LENGTH LOQAD, If
the (modified) address of location Y is even, the con-
tents of Y (8, 1-19) and ¥+1 (8, 1-19) replace the con-
tents of the A {8, 1-19) and Q (S, 1-19) registers. If
the (modified) address of Y is odd, the contents of ¥
(S, 1-19) replace the contents of the A (S, 1-19) and Q
(S, 1-19) registers. Y and ¥+l are unchanged.

Example 1: Double length load the A and Q registers

STA Y X 0300000 Word Times: 2

Functional Description: STORE A. The contents of the
A register (8, 1-19) replace the contents of memory
location Y (8, 1-19). Thecontenisof A are unchanged.

Example 1: Store the A register contents 42180719
{012231 5p) in GAP symbolic location RESULT,

with the positive number 821695, (0000001 1104677g) GAP Coding:
in GAP symbolic locations AMT#7 {even) and AMT#7+1. Symbol Opr Operand X
‘l2|,|4lu[, NI |:]uJ|4]—u|\n|n|||ui|o ao
A L . S TAIRE S UL T,
GAP Coding:
Symbol Opr Operand X Register Contents in Octal
|[a|s]4]n]_o (NN |z]|s]u]lu[le|n|ls||s z0 A
. _ IDLDIAMT4# 7 .
Before execution: [0122315 | [? J
After execution: 0122315 l | 2]
Register Contents in Octal
GAP Symbolic Location, RESULT
A A
Before execution: ? ? Before execution: ?
After execution: 0000001 1104677 After execution: 0122315

Ble- 225

53

Example 2: Store the A register contents -65421,4
(3600163g) in GAP symbolic location QUTPUT. OUT-
PUT initially contains -421881g (3655463g).

GAP Coding:

Symbol Opr Operand X
|]2[3]4]5';e NEREE llea]u[luIlol!?llnln 20

S TA|IQOU.TP.UT, |

L L L N " L " N ——

Register Contents in Octal

Q

A
| seoores || 2 |
| seoores || 72 |

GAP Symbolic Location, QUTPUT

Beifore execution.

after execution.

' A
[—
Before execution. 3655463 |
After execution: 3600163
¥
DS8T Y X 1300000 Wword Times: 3

Functional Description: DOUBLE LENGTHSTORE, If
the (modified) address of memory location Y is even,
the contents of the A (8,1-19) andQ (S, 1-19) registers
replace the contents of ¥ {8, 1-19) and Y+1 (S, 1-19},
If the (modified) address of Y is gdd, the contents of
Q (8, 1-19) replace the contents of Y (8, 1-18). The
contents of A and Q are unchanged.

Example 1. Double length store A andQ register'con-
tents 82169510 (0000001 11046717g) in GAP symbolic
locations AMT¥8 (even) and AMT#8+1.

GAP Coding:

Symbol. Opr Operand 4
||2131415[u R |z_T!s'u]la|le']n||e|n a6

N . DS TAMT.# 8
Register Contents in Octal

A Q

Before execution: | 0000001 | | 1104677 |
After execution: | 0000001] 1104677 1

GAP Symbolic Locatig&g

AMT#8 AMT#8+1
Before execution: ? ? J
After execution: 0000001 :' | 1104677

Example 2: Double length store A and@ register con-
tents 526300, (0000001 00037349} in GAP symbolic
locations AMT#7 (odd) and AMT#7+1.

Register Coniencs in Octal

A Q
Before execution: 0000001 i 0003734'
After execution: 0000001 0003734

GAP Symbolie Locations

AMT#7 _ AMT#T41
Before execution: ? ?
Alfter execution: 0003734 ?

STO Y X 2700000 Word Times: 3

Functional Description: STORE OPERAND ADDRESS.
The contents of the A register (7-19) replace the con-
tents of memory location Y (7-19), A (S, 1-19) and Y
(8, 1-8) are unchanged.

Example: Store the operand address that is in the A
register, 85535, (177774}, in GAP symbolic location
TAX#1, which initially contains 0001667g, an LDA
instruction.

GAP Coding:

Symbol Qpr Operand X

™
o

vz 2] 4] 5] =]r[=]e v2f3 1a]1s] ts[17 e 18

STO|T AX# 1

L L L i - i

Register Contents in Octal

A Q
Before execution: 0017777 | I 9 |
After execution: 0017777 l I 2 l

ble=229

GAP Symbolic Location, TAX#1

Bzfore execution. 0001667
After execution: 0017777
ORY Y X 2300000 Word Times: 3

Functional Pescription: OR AINTOY. Corresponding
bit positions of memory location Y (8, 1-19) are set
with 1-bits for every bit position of the A register
(8, 1-19) containing a 1-bhit. The contents of the A
register and other hit positions of Y remain unchanged.

GAP Coding:
Symbal Opr Operand X
t[z|s|4[a|e NEREL lz:|3||4ll5h\ai|7|ia|}9 2n
. .. |o.RY|PRI CE _

Memory and A
Register Contents (BCD}

A Reg PRICE

Lelofoflofs]s

Before execution:

Example 1: OR Ainto Y withthe A register containing . 'l' T
Tm%&'nd Y is GAP symbolic location $OUT, con- After execution: $|0,0|'s|[5]6
taining 00137113.
GAP Coding:
Symbol Opr Operand X
|fz|3]4]5ie B e 10 lz]l;llal\s]\uinl;slln 20
L IOR YIS OU T
. EXT Y X 2000000 Word Times: 3

Memory and A Register before Execution (binary):

souTt

g S

~

00 1|0 01

00 000{00L01 111 1 1

012345678910 111213 141516 171819

0111010000 110 1 1f1 1 1|1 0 0O

- S

A Reg

Memory and A Register after Execution (binary):

joutT

r It

o1j110f101for 111 a1 2 1]t 0 1

012345678910 111213 141516 171819

letliiolioofoo 1Jo 1 1]1 1 11 0 9

J
~ I

A Reg

Example 2: Placea dollarsign ($), previously loaded
into the A register, before the 2-digit BCD quantity
56 in GAP symbolic location PRICE.

BiE-225

Functional Description: EXTRACT. Foreachl-bitin
Y (S, 1-19) a O-bit is placed in the corresponding bit
position of the A register (S, 1-19). If bit positions in
Y contain 0-bits, the corresponding bitpasitions in the
A register are unchanged. Y is not affected.

Example 1: Extract 1-bits from the A register con-
tents 2465317g according to the pattern 12347534 con-
tained in GAP symbolic location MOD,

GAP Coding:
Symbol Opr Qparand 1 4
|[2|311155a HENED |z[u£ulullu|l?|lslu 20
L) EXTMOD .

Memory and A Register before Execution (binary):

MOD

I
r Ty
01010011100111101011

0123456788910
B[100\110|10 101 1001|111

i A

A Reg

11 1213 141516 17 18 18

55

Memory and A Register after Execution (binary):

MOD

_ _ . N . - ._ ’ —_——— —_ \
Lo f{ﬁ 1_0[9 1 1[1 0 0] 1111 o1]o1 1
012345678910 111213 141516 17 18 19
[1 0

3_9_9[{_9“0[9 0 1| 000 lo 00 |1 0 0|
T

A Reg

Example 2: Delete the dollar sign ($) from the BCD
word $89 in the A register preparatory to storing the
word into memory. Assume GAP symbolic location

Memory and A Register before Execution (BCD):

STRIP contains the BCD word $00.

GAP Coding:
Symbal Qpr Operand X
I[2|:!J'a-?s|e ENED |2'=|3||4—|—i5||9'1!7|I0||D 20
. |ExTlsTRIP

Memory and A
Register Contents (BCD)

A Reg STRIP

[sT8[e}[sfofo]
lofslel[s]ofo]

Before execution:

After execution:

* MOV Y 2400000 Word Times: 4+ 2N

Functional Description: MOVE, A block of infor-
mation starting at Y is moved to another area of
memory. The A register must contain the starting
address of the area to which the data is to be moved,
and the Q register must contain the 2's complement
of the number of words to be moved, The contents
of the P counter are stored automatically in index
word 00 (bits 5 through 19). The time required to
execute this command is 4 plus 2N word times,
where N is the number of words to be moved, After
execution, the A register is set to 0’s and the @
register contains the 2's complement of the number
of words moved, This instruction cannot be auto-
matically modified,

* This instruction is an optional feature.

Example: Move a block of 10 words initially stored in
an area starting at symbolic location START to the
memory area starting at symbelic location TOTALS,
Assume that GAP has assigned the symbolic location
START to actual address 017710 and TOTALS to actual
address 120Q1(. Assume that the number of words to
be moved has previously been leaded into the Q) reg-
ister in 2's complement form.

Memory and Register Contents in Octal:

Before execution:

Memory Registers
Octal
Address Contents A
0261 0123456 0002260 | = 120010
0262 0246531
0263 1234567
0264 0785432
0265 0135764 Q
0266 2345670 3777766 |= -1010
0267 1001234
0270 0132456
0271 2147765
0272 1771777
v
2260 ?
2261 ?
2262 ?
2263 ?
2264 ?
2265 ?
2266 ?
2267 ?
2270 ?
2271 ?

56

Memory and Register Contents in Octal:

After execution:

Memory _Registers
Octal
Address _ Contents ~ A
0261 0123456 0000000
0262 0246531
0263 1234567
0264 0765432
0265 0135764 Q
0266 2345670 (E;?E?EE—
0267 1001234
0270 0132456
0271 2147765
0272 1777777
T
2260 0123456
2261 0246531
2262 1234567
2263 0765432
2264 0135764
2265 2345670
2266 1001234
2267 0132456
2270 2147765
2271 1797777

‘Data Transfers-Arithmetic

LAQ 2504001 Word Times: 3

Functional Description: LOAD A FROM Q. The con-
tents of the Q register (S, 1-19) replace the contents
of the A register (8, 1-19). @ is unchanged.

Example: LoadA from Q,or replace the existing con-

tents of A 12345678 with the contents of @ 76543213.

GAP Coding:
Symbol Opr Operand b 4
|[z[a[n-[s|'a ENEE |2]|allal|sl|eini|q||n a0
. . LAQ| |

Comments:

Register Contents in QOctal

A .
Before execution: 1234567 2654321
After execution: 3654321 1654391

No operand address is required. Auto-
matic modification will change the instruction.

LQA 2504004 Word Times: 3

Functional Description: LOAD Q FROM A. The con-
tents of the A register (8, 1-18) replace the contents
of the @ register (8, 1-19), A is unchanged.

Example: Load Q from A, or replace the existing con-
tents of @ 2465317y with the contents of A 11177784.

_GAP Coding:

Symbol Opr Cperand X
1[21.9]4_]_5]4 AN EE |zj|:]|q]lui|a[|?||e]n 20
o i 1. Ll Q| A L

Register Contents in Octal
Before execution: L 1117716 I | 2485317 J

After execution: | 1117976 l

1117776 |

Comments: No operand address is required. Auto-
matie modification will change the instruction.

MAQ 2504006 Word Times: 3

Functional Description: MOVE A TO Q. The contents
of the A register (8, 1-19) replace the contents of the Q
register (8, 1-19). Zeros replace the contents of A
(8, 1-19).

AT 66
HE=225

57

Example: Move A to @, or replace the existing con-
tents of the Q register 37777774 with the contents of the
A register 13334444 and zero the A register.

GAP Coding:
Symbal Qpr Operand X
|l;|3i._'i—5f5 NEREE |z]|3]ul|s]|si”l\a]|q 25
M aQ

Register Contents in Octal

A Q
Beiore execution. 1333444 l i 37T
After execution: 0000000 1333444

Comments: No operand address is required. Auto-
matic modification will change the instruction.

XAQ 2504005 Word Times: 3

Functional Description: EXCHANGE A AND Q. The
contents of registers A (S, 1-19) and Q (8, 1-19) are
interchanged.

Example: Exchange A and Q, or interchange the con-
tents of A 1234567 and Q 1777777,

GAP Coding:

Opr Operand X

|z'||3]|4'[|5|lsin|la||u zn

Symbol
t—laja[4ls|a

! i

ai9||n

X AQ

Register Contens in Oat2

A Q
Before execution: 1234567 1777777
After execution: 17177717 1234587

Comments: No operand address is needed. Automatic
modification will change the instruction.

* LAC 2504202 Word Times: 3

Functional Description: LOAD A REGISTER FROMC
REGISTER. The contents of the A register{1-19) are
replaced by the contents of the C register (real time
clock). The sign of the A registeris set to zero. The
contents of the C register are unchanged.

Example: Load A register {from C register. Assume
that the C register contains the binary equivalent of
1 hour (52, 1403 sixths of a second).

GAP Coding:

Symbaol Opr Operand X
t|=|3|415[a DINEINEL lz’ilsjn]l5||ain|\al|g z0
—) L AC
. Register Coniends in Oct2l
- A C
Before execution: ? 0052140
aifter execution: 0052140 0052 140
*1.CA 2504210 Word Times: 3

Functional Description: LOAD C REGISTER FROM A
REGISTER, The contents of the C register are re-
placed by the contents of the A register (1-19). The
sign of the A register contents is ignored. The con-
tents of A are unchanged.

Example: Load C register from A register. Assume
that the A register contains the binary equivalentof 12
hours {259,200, sixths of a gecond).

GAP Coding;
Symbel Opr Operand X
|[2|3]_l_|g_e[e a|n||0 lzlla|!4§lﬂ|ls;l?]ls]n 20
, . L C A .

* This instructionis partof the real time clock optional
feature.

Bl 225

58

Register Contents in Octal

c

A
[om2200 || o]
[om2200 | [[o772200 |

Comments: The C register operates as a binary
counter that is incremented by one every sixthof a
second. When the binary count reaches the equivalent
of 24 hours (518,400 sixths of a second}, it automati-
cally resets to zero and starts counting again.

Before execution

after execution:

The C register contents are not directly accessible
for processing or console display. However, the LAC
instruction, by transferring those contents to the A
register, makes the C register available to the stored
program or to the console operator,

A conversion subroutine is required for program
translation of the C register contents from binary nota-
tion to hours, minutes, seconds, and sixths/seconds,
and for print-out of elapsed or actual time through the
control console typewriter.

A simple, straightline subroutine is shown below to
illustrate how conversion could be done. In actual
practice, a more sophisticated approach involving X
registers and controlled looping would be more ef-
ficient.

Example: Convert the C register contents 1205701,
to decimal hours, minutes, seconds, and sixth~seconds.
Assume symbolic locations CON1 through CON3 con-
tain conversion constants as follows:

Symbolic

Location Contents Remarks
CON 1 52,140g Hours Factor
CON 2 550 g Minutes Factor
CON 3 6 Seconds Factor
Op+ Ot inad x REma s

M r{ D "i" [T B KX i

L AC TRANSFER TIME TO A REG

M oA G | TRANSFER TIME TO Q REG FOR DVD

DY DCONI e COMPUTE HOURS

ST AIHOURS _

LDZ] CLEAR & REG

o ¥ bo|lcoN COMPUTE MINUTES

BT A/MI NS5 - i

LDz R -

IDvD[c o N 3 . COMPUTE SECONDS L

8 T A|SEC & .

X AQ . . TRAN’SFER_SLXTH-SECONDS TO A Rl_-;_c_;___

STASXTHS i R]

|

Initial Register Contents:

C A Q
L2

Registers Affected by Each Instruction:

1205701 ?

GAF Registers

Coding A Q
LAC 1205701 ?
MAQ 0000000] 1205701
DVD CON 1 0000017 | 0015041
STA HOURS 0000017 .0015641
LDZ 0000000 || 0015041
DVD CON 2 0000022 {{ 0000321
STA MINS 000022 || 0000321
LDZ 0000000 || 0000321
DVD CON 3 _PEOCLO‘IE 0000055_
STA SECS _0000042 0000005
XAQ 0000005 || 0000042
STA SXTHS 0000005 | 0000042

Memory Contents after Conversion:

Symbolic

Location Contents
HOURS 0000017
MINS 0000022
SECS 0000042
SXTHS 000000%5

The time represented by the C register contents can
also be converted manually to a chronological scale
by dividing those contents by appropriate conversion
factors. Perhaps the simplest method would be to con-
vert the binary contents of the C register to octal, then
decimal, and divide by decimal conversion factors. The

59

" the A register

conversion chart in Figure 9 makes the octal-to-
decimal conversion easy. Decimal conversionfactors
used for division could be:

Hours = 21,600
Minutes = 360
Seconds = 6

{Any remainder would be in sizth-seconds.)

For example, assume that the contents of the C
register are 1205701g. By keying in an LAC instruc-
tion at the control console, 12057014 is displayed in
indicators., The octal-to-decimal
conversion chart in Figure 9 provides the decimal
equivalent 330,689 (in sixth-seconds).

Dividing by the hours conversion factor:

15 hours
21600 1330689
21800
114689
108000
6689 sixth-seconds remainder

Dividing the remainder by the minutes conversion
factor:

18 minutes
3601 6689
380
3089
2880
200 sixth-seconds remainder

Dividing this remainder by the seconds conversion
‘factor:

34 seconds
61209
18
)
24
5 gixth-seconds remainder

Thus, the C register contents 1205701y represent 15

bhours, 18 minutes, 34 seconds, and 5 sixth-seconds, or
15:18:34:05.

Register Meodifications

LDZ 2504002 Word Times: 3

Functional Description: LOAD ZERO INTO A REG-
ISTER. The contents of the A register (8, 1-19) are
replaced by zeros.

Example: Load zero into A register, or replace the
existing contents of the A register 3777777 with zeros.

GAP Coding:

Symbsol Opr

2 I N Y I K T

LD Z

Cperand X

|z]ts| ulu]tuil?‘le“a z0

Register Contents in Octal

A Q
serermr | [2|

Before execution. l

After execution: | ooooooo | [2]

Comments: No operand address is needed. Automatic
modification will change the instruction.

LDO 2504022 Word Times: 3

Functional Description: LOAD ONE INTO A REG-
ISTER. A 1-bit is placed in bit position 19 of the A
register; all other bit positions {8, 1-18} are set to
0-bits. ’

Example: Load one into A register. Assume that the
A Tegister initially contains 3777777,

GAP Coding:

Symbal Qpr

Cperand X

ISR R

"

IRENEE ta]la|l4]—|ul|n||7luiln o

-) L DO .

Register Contents in Octal

A Q
Before execution: i ?
After execution: 0000001 ?

Comments: No operand address isneeded. Automatic
modification will change the instruetion.

(Ble- 229

60

LMO 2504102 Word Times: 3

Functional Description: LOAD MINUS ONE INTO A
REGISTER. The contents of the A register (8, 1-19)
are replaced by 1-bits, giving the cctal configuration
31T .

Example: Load minus one into A register. Assume
that the A register initially contains 1357642,
GAP Cading
Symbol Opr Operand X
1|z|3!qi5|s IINEREE ‘zlla_‘_|4]|5|lnjn||a|m 0
L MO e
Register Contents in Octal
A Q
Before execution l 1_357642J I ? |
after execution- | 3T } | 2 —|

Comments: No operand address isneeded. Automatie
modification will change the instruction.

CPL 2504502 Waord Times: 3

Functional Description: COMPLEMENT A. Each bit
position in the A register (S, 1-19) is inverted; each
1-bit is replaced by a 0-bit and each0-bit is replaced
by a 1-bit.

Example: Complement A register. Assume that the
A reglster contains 1234567g.
GAP Coding:
S_;hol Opr Qperand X
122 «[s]als o volwzal oz ia[as[va 17 15| 1s]z0
, CPL

A Register Contents

Comments: No operand address isneeded. Automatic
modification will change the instruction.

NEG 2504522 Wword Times: 3

Functional Description: NEGATE A. The 2's com-
plement of the contents of the A register (8, 1-19)
replaces the contents of A (8, 1-19). If the capacity
of A is exceeded, in anattempt to negate the maximum
negative number, overflow ocecurs.

Example: Negate A register contents 00001014,
GAP Coding:
Symbaol Opr Operand X
|lz[3]4:nie s e lz[l:!ujlslleinllalls ze
_INE G ,

Register Contents in Qctal

A Q
Before execution: 0000101 ?
After execution: 377176877 2

Comments: Note that, unlike the CPL instruction
which forms the 1's complement, NEG forms the 2’'s
complement of the contents of A, Nooperand address
is needed, Automatic modification will change the
instruction, Overflow occurs if an attempt is made
to negate the largest negative number, -524,28810.

CHS 2504040 word Times: 2

Functional Description: CHANGE SIGN OF A REG-
ISTER. The sign bit of the A register is changed. Bit
positions | through 19 of A are unchanged,

Example: Change sign of A register, Assume fhat the
A reglster contains 13576423.

_ in Binary GAP Coding:
Before execution: Symbel Opr Operand X
1] 2] 3] 4] 5] =n|e, % vaf1z]1s]ta[1s]ieji7|1s]18{20
0123458678910 111213 141516 171819
L C HS)
01{010Jj0211)10 O{1 O 1(1 1 O0f{1 1 1
After execution: Register Contents in Octal
A Q
10j101/100/01 1/0 1 0/0 0 1100 0 Before execution- r1357642 ll ?]
2 5 4 3 2 1 0 After execution: 3357642 l l °]
Qctal Equivalent
> I I
0 e B s T o RN

61

Comments: No operand address isneeded. Automatic
modification will change the instruction.

NOP 2504012 Word Times: 3

Functional Description: NOQ OPERATION. Zero is
added to the contents of the A registey (8, 1-19}.

Example: No operation, or add zero to the contents
1234567 of the A register.

GAP Coding:

A shift instruction canrequirefrom 2to 12 word times
for execution ({including instruction access time},
depending upeon the length of shift. A shift of one hit
position or less requires two word times. Each addi-
ticnal 3-hit shift, or fraction thereof, requires an
additional word time,

Automatic modification of shift instructions changes
the instruction.

Arithmetic Register Shifts

Opr

9i|0 12

Symbal
I1 IR

Cperand x

|3I|1Ils|lai|?lia||9 26

4|5iea

SRA K =31 2510000 Word Times: 2to 12

NQP

Functional Desecription: SHIFT RIGHT A REGISTER,.

Register Contents in Octal

A Q
Before execution: 1234587 ?
After execution: 1234564 2

Comments: This instruction isusefulinprogramming
delays or resgerving space in a program for later in-
sertion of an instruetion. No operand address is
needed. Automatic modification will change the in-
struction.

SHIFT INSTRUCTIONS

Shift instructions involve the serial (bit-by-bit) move-
ment of data within or between registers. Shifts fall
Into two categories: arithmetic register shifts and
input-cutput register shifts.

Shifting is useful in arranging data before and after

" transfer between direct input-output peripherals, and
the central processor, scaling quantities before and
after arithmetic operations, recovering from overflow
conditions, and performing simple multiplications and
divisions,

Shifting is limited to 31 bit positions per shift instruc-
tion because bit position 15 through 19 of the instruc-
tion word are used to indicate the length of shift. With
5 bit positions, the largest number that can be ex-
pressed is 31.

The contents of the A register (1-19) are shifted right
K places. If Aisplus,0-bitsare inserted in the vaca-
ted positions of A; if Ais minus, 1-bits are inserted in
the vacated positions. Bits shifted out of bit position 19
are lost. The sign of A is not changed.

Example 1: Shift right 3 bitpositions the positive num-
her 12535378, previously loaded into the A register.

GAP Coding:
Symbol Qpr Operand X
|[z§a]4]n'le ENEE \2[l3||4J|!llai|7l|a]|p 20
. ,_ |s R A

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

011010

011

10 0

1 01

110111

+1 2 3 4 5 B 7

After execution:

012345678010 111213 141516171819

61001 1{1 0 01 O 31]1 1 O

OO—IOOI

+0 1 2 3 4 5 6

62

Example 2: Shift right 7bitpositions the negative num-
ber 3765432g, previously loaded into the A register.

. GAP Coding:
Symbol Opr Oparand X
|Iz|ai4isio L |a’=|!ju]ls[|ni|?|:ells 2o
. S R AT

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

1|1j111]210l10 1 1 00011010

3 7 6) 4 3 2

After execution:

0123456786910 111213 141516 171819

111111 11ft1 11 1 1|0 1 @Q¢j1 10

3) 7 ki) 2]

Example 3: Divide by 8 the positive number 484,104,
{1612350g), previously loaded into the A register.

GAP Coding:
Symbal Opr Operand X
I[z|a]_l]_ﬁ[e [NENED 'zl'a!”]"i"i”[“l” I
L) SR A|S . .

Register Contents in Octal

laces. Vacated bit positions of A are filled with

-bits. If a non-zero bit is shifted out of position 1,
overflow occurs and the bit is logt. The sign of A is
unchanged.

Example 1: Shift left 2 bitpositions the positive num-
ber 123456g, previously loaded into the A register.

GAP Coding:

Symbol Opr

rf2|3I4]5|eso|n

S L A{2

Cperand X

|z'||alul\5ltsi|7i|a||a zn

A Register Contents
in Binary

Before execution:

0123456768910 111213 141516 171819

giojeo1jo10j0t 11 0 Of1 0 191 1 ©

+ 1 2 3 4 5 6

After execution:

012345678910111213 141516 171819

ofojpo1j001}11 0|0 1 Of1 1 1|0 O O

+ 5 i 6 2 i 0

Example 2: 8hift left 5 places the negative number
55353618, previously loaded into the A register.

GAP Coding:

Symbol Opr Oparand X
']’[’E"TLI—_‘ NERED ::Iu|u]’u|u|ﬂ|u]n 20
SLA|5

L oL —_

A Register Contents
in Binary

Before execution:

0123456760610 111213 141516 171819

A
Before execution: [1612350 | | ?_ 1fofoooforif1 ojo 1 1{1 1 0|0 01
After execution: ' omusﬂl 2] 2 o0 3 8 3 8 1
= 580134 After execution:

SLA K 2512000 Word Times: 2tol2

Functional Description: SHIFT LEFT A REGISTER.
The contents of the A register {1-18) are shifted left K

012345678910 111213 141516 171819

11111600111 1} 0 0 0(1 0 O0{0 0 O

3 7 1 7 0 4 0

Lt_J {:i N

ble= 2288

63

Example 3: Multiply by 4 the positive number 13361¢
(2470g) . previously loaded into the A register,

Example 2: Shift right double 2 bit pesitions the con-
tents of the A and Q registers.

GAP Coding: GAP Coding:
Symbal Cpr Operand X
Symbol Opr Operand X ‘|2|3 "[5'[, NEREE Izll:l\aill'.lllé_l?llsitn 20
t]2] 3 a4 =t aie 0 |z]|aiu]|s|\s|nlls||g a0 I I SRD|2
_ls L. al2
Register Contents in Qctal Register Contents
in Binary
2 @ b t
Before execution:
Before execution. 0002470 ?
A Reg
After execution: 0012340 2
oojti1ofpo01f0t 1|1 0 1|1 1 00O O 1
534419
012345678910 111213 141516 1718189
o gojoii1f0o10f11 01 1 0(0 1 1]0 1 O
SRD K 2511000 Word Times: 2to12
@ Reg

Functianal Description: SHIFT RIGHT DOUBLE. The
contents of the A and @ registers (1-19) together are
shifted K places to the right. Bits shifted out of A {19)
shift into @ (1). Bits shifted out of @ (19) are ldst,

If the sign of A isplus (0), 0-bits {fill the vacated posi-
tions, If the sign of A is minus (1), 1-hits fill the
vacated positions. The signof@ is replaced by the sign
of A. The sign of A is unchanged.

When the instruction is written SRD 0, only the sign
of A is shifted into the sign position of @, There is
no other data transfer.

Example 1: Shift right double 2 octal positions the con-
tents of the A and Q registers. A contains 12345678,
Q contains 3654321y,

GAP Coding:
Symbal Opr Operand X
|12[a]4|a[a NENEE \z]n s4l|s||e|lvlni|w)
. , S RD|6.
Register Contents in Octal
A
Before execution: | 1234567 | | 3654321 |
After execution: 0012345 ' 1576543 l

After execution:

A Reg

oojpoo1j1014f0t 01 1 110 1 111 0 @

012345678910 111213 1415616 171819

R

100110 1 0 1§1 0 0

11¢0

Q Reg

SLD K 2512200 Word Times: 2to12

Functional Description: SHIFT LEFT DOUBLE. The
contents of the A and Q registers (1-19) together are
shifted K places to the left. Bits shifted out of Q (1}
shift into A (19). The vacatedpositionsof Q are filled
with 0-bits, If a non-2zero bit is shifted out of A (1),
overflow occurs and the bit is lost.

The sign of @ replaces the signof A. The sign of @ is
unchanged. (SLD 0 shifts only the sign of Q to A.
There is no other data transfer.)

Bie- 225

64

Example: Shift left double 4 bit positions the contents
ol the A and Q registers.

GAP Coding:

Symbaol

Opr

Operand X

T

2i3i‘]5.|

o

!.Dl!c
L

lz]l‘!] |-]tsl\s||7Lle|ln 20

s L. D!4

Register Contents
in Binary

Before execution:

A Reg

gojooo(010(11 0} 0 1 1{1 21 0}j1 01

012345678010 111213 141516 1718186

poefoti1lor101 11 0 1]0 1 1;0 1 1

@ Reg

After execution:

Register Contents
in Binary

Before execution:
A Reg

012345678910 111213 141516 171819

000

1

1

1

1

0

1

1

1

1

010111 1j001

After execution:
A Reg

012345678910 111213 141516 171819

gltftroftr1fr0o 2L 1 0|0 1 &0 01

SCD K 2511200 Word Times: 2to12

Functional Description: SHIFT CIRCULAR DOUBLE,
The contents of the A and Q registers (1-19) together
are shifted K places to the right ina circular fashion.
Bits shifted out of A (19) shift into Q {1) and those
from @ (19) shift into A (1). The sign of A replaces
the sign of Q. The sign of A is unchanged.

Example: Shift circular double 4 bit positions the con-

A Reg tents of the A and @ registers.
I GAP Coding:
o0l101110G|11 11 ¢ 1,0 1 00 11
| Symbol Opr Operand X
012345678910 111213 141516 171819 t]z] 8] =] ele e rofrziierivalne tejivtajoias
T . 5 CD|4. . .
001101110101110110000 !
Q Reg Register Contents
in Binary
Before execution:
A Reg
5CA K 2510040 Word Times: 2to12
0110011100 0 1 01 01101
Funetional Description: SHIFT CIRCULAR A REG-
ISTER, The contents of the A register (1-19) are ol1l234|567iB910/(11 1213114 151617 1819
shifted right X places inacircular fashion: that is bits
shifted out of position 19 are inserted in position 1, gigforiwooils 1|01 01 001 10
replacing bits asthey are shifted outofposition 1. The
sign of A is unchanged, Q Reg
Example: Shift circular A register contents 8 bit posi- After execution:
tions. A Reg
GAP Coding: ’ 0011011001 1 1 00 01 ¢ 101
Symbal opt Operand X 011|1234(567|8910)11 1213|1415 16(17 1818
|]2|z|4[5|e . % a0tz 1% |4]|=||s||7||s||n 20
: g|1001(001)10 0] 0 1 0 010
“Iscals 1 1] 1 1
— Q Reg
e & oI
BE-9295
" '] L

65

Arithmetic Regisier Shifts GAP Coding:
Symbol Opr Operand X
T 2, oa s s e w aa]ta] s aajasiaear Te 18 |20 |
: R LR S S AL E B _YEprE e AT e
SAN K 2510400 word Times: 21012 s N a6,
Functional Degeription: SHIFT A AND N RIGHT. The
contents of the A (1-19} and N {1-6} registers together)
are shifted K places to the right. Bits shifted out of A Register Contents (BCD)
(19) shift into N (1). o
A N
Bits shlfFed out of N (6) are lqs't. If the sign of A is Before execution l 123 J | 8 |
plus, 0-bits fill the vacated positions of A, If the sign
of A is minus, 1-bits {ill the vacated positions of A, After execution
; ; +12 | 0 ‘
The sign of A is unchanged. i
Example: Shift A and N right 6-hit positions {1 BCD
character),
") ANG K 2511400 Word Times: 2tol12
GAP Coding: '
Symbol Opr . Operand X Functional Description: SHIFT AINTONANDQ. The
BENENENENE EEEE RN R LS BN R L contents ol the A register (1-19) are shifted K places
8 A N6, to the right into both registers N and Q. Bits shifted
” out of A (19} enter both @ (1) and N (1}. Bits shifted
out of N(6) andQ (19)arelost, If the sign of A is plus,
the vacated positions of A are filled with G-hits; if the
Register Contents in BCD sign of A is minus, 1-bits fill the vacated positions of
register A, The sign of A replacesthe sign of Q. The
= A N sign of Aisunchanged. The N register must be ‘ready’
Sofore © ti [$59 o before this instruction is executed. See BNNand BNR
Before execution. . LA : instructions.
After execution: 085 9 Example: Shift A into N andQ registers 6 bit positions.

Comments: While this instruction can be modified
automatically, its use ina modified formisnot recom-
mended. However, if the lengthof the shift is modified
by the contents of an X register, thenthe length of the
shift, plus the contents of X, cannot exceed 31 places
in any one shift instruction.

SNA K 251010G Word Times: 2to12

Functional Description: SHIFT N AND A RIGHT. The
contents of registers N {1-6) and A (1-19) together are
ahifted XK places to the right. Bits shifted out of N (6)
shift into A (1}. Vacated positions inN are filled with
0-bits. Bits shifted out of A (19) are lost. The sign
of A is unchanged. The N register must be ‘ready’
before this instruction is executed. See BNN and BNR
instructions.

Example: Shiit N and A right 6 bit positions (1 BCD

character).

GAP Coding:

Symbal Qpearand X

||;|:Jia wloe [0, B ote vz taas jaejur o te ez

1a v qls

Register Contents in Octal

A Q@
Before execution: 1460430 0000000 J
N
2]
A Q

After execution:

oo14604 | | 0600000 |

N

[50]

B~ 225

L o

66

NAQ K 2511100 Word Times: 21012

Functignal Description: SHIFT N, A, AND Q RIGHT.
The contents of registers N {1-6), A (1-19), and Q
.(1-19) together are shifted K places to the right. Bits
shifted out of N {6) shift into A (1). Bits shifted out of
A {19) shift into Q {1). Bits shifted out of @ (19) are
lost. Vacatedpositionscf Narefilled with 0-bits. The
sign of A isunchanged. The signof Q is set to the sign
of A, The N register must be ‘ready’ before this
instruction is executed.

Example: ShiftN, A, andQ right6 bit positions (1 BCD
character).

GAP Coding;
Symbaol Opr Operand X
';_2!3|‘i5i° ENEE lzl'l-i]!ll!s]lsil?l‘ﬁjla za
LN A Q6 .
Register Contents in Octal
A Q
Before execution: L 888 l L T]
N
7
A Q

after execution: 877 J

NOR K 2513000 Word Times: 3to12

Functional Description: NORMALIZE THE A REG-
ISTER. The effect of thisinstruction dependsupon the
value of K, the sign of the A register contents and R
(the number of leading zeros in A),

If the A register sign is plus, and the number of
leading O-bits (R) in A4 (1-19) is less than K, the con-
tents of A (1-19) are shifted left R places. The dif-
fterence K-R replaces the contents of memory location
0000,

If the A register sign is plus, and the number of
leading 0-bits (R) in A {1-19) is greater than or equal

to K, then the contents of A (1-19) are shifted left K

5‘5'- e)

places; O-bits replace the contenis of memory location
0000 {15~19); bit positions (S, 1-14) of 0000 are always
set to zeros., The sign of A is unchanged. Vacated
positions of A are filled with 0-bits.

If the A register sign is minus, the number of leading
1-bits of A (1-19) are shifted left; otherwise execution
occurs as deseribed above. If a 1-bit is shifted from
A (1), overflow oceurs.

Example 1: Normalize the A register which contains
00012344 (9 leading 0-bits) to 10 bit positions (K = 10,
R=9),

GAP Coding:

Symbal QOpr Operand X

|'!2|3| 4] 5| BN ENRL lz'-la]u]ls;\ainlu“o 20

N OR|1O

—

Memory and Register Contents in Qctal

A 0000
Before execution: 0001234 | | 0000077 |
After execution: 1234000 0000001

Example 2: Normalize the A register which contains
00123358 (6 leading 0-hits) to 5 bit positions (K = §,
R = 6).

GAP Coding:

Qpr
||zl_3|4_'|_sin EREE

N O R!5

Symbol Operand x

‘EIH.“T'al‘“i”["i“ z0

' L L n

Memory and Register Contents in Octal

A 0000
| 0012345 | | ooooo7e |

Before execution:

After execution: l . 0516240 §|

Bie

l:)ii} Zﬁq}gi

67

0000000 | |

Example 3: Normalize the A register which contains
the negative number 3776542 (9 leading 1-bits} to 6
bit positions (K = 6, R = 9.

GAP Coding:
Symbal Opr Qperand X
|r2|s A ENERLD '2]‘3?”]"|‘5i'7|‘°|'9 ze
__|N O R|6 .

_Memory and Register Contents in Octal

A - 0000
1
3776542 J | 00000 ??

Before execution.

After execution:

3654200 0000000

Comments: The NOR instruction is used primarilyin
normalizing the A register in normalized floating-
point arithm=tic operations in the AAU. See the
GE-205/215/225 Auxiliary Arithmetic Unit reference
manual, CPB-~325.

NOR canbe automatically modified; however, the length
of a shift after modification mustnot exceed 31 places.

DNO K 2513200 Word Times: 2to12

Example 1: Double length normalize the 4 and Q reg-
isters which contain 0001234y 0076543 (9 leading '

0-bits) to 6 bit positions (K = 6, R = 9).

GAP Coding:
Symbaol Opr Operand X
_|[2|.a|4|5i_e N 12}135!4E|5||6!t?||s||g 26
. . 1D N O|B

Memory and Register Contents in Octal

A Q
Before execution: | 0001234 | | 0076543
0000
0000077 |

A Q
| 123403 | [1654300 |

0060

l 0000000

Example 2: Double length normalize the Aand Q reg-
isters which contain 0001777g 00001775 (9 leading
0-bits) to 19 bit positions (K = 15, R = 9).

After execution:

GAP Coding:

Functional Deseription: DOUBLE LENGTHNORMAL-
IZE. If the signofthe A register is plus, and the num-
ber of leading O-bits (R} of A (1-19) is less than the
constant (K), then the contents of registers A (1-19)
and @ (1-19) are shifted left R places. K minus R
replaces the contents of location 0000 {15-19).

U R is greater than or equal to K, then the contents of
registers A (1-19) and Q {1-19) are shifted left K
places; 0-bits replace the contents of memory location
0000 (15-19). Bitpositions§, 1-140f location 0000 are
always set to zero. Bits shiftedoutof @ (1) shift into A
{19). Vacatedpositions of @ are filled with 0-bits. The
sign of Q replaces the sign of A. The signof Q is
unchanged.

If the sign of A is minus, the number of 1’s of A (1-19)
are shifted left; all other conditions are the same as
when the sign of A is plus. If a 1 bit is shifted out of
bit position 1, the overflow indicator is turned ON.

Opr

HlBlIG

D N.O

Symbol Operand x

\2|I3I|AJIS|Ioi!?|Ia|IH 26

1.5

'[Zl\zl‘iai“

Memory and Register Contents in Qctal

A Q
Before execution: | 0001777 | | 0000177
0000
00000 ?7?
A Q
After execution: 1777000 0177000
0000
0000006

BlE-228

68

INTERNAL BRANCH INSTRUCTIONS

Branch instructions, which provide decision-making
capability in the GE-225, fall into two categories: 1)
internal branch instructions {described in this section)
and 2) input-output branch instructions {described in
appropriate peripheral instruction sections).

Internal branch instructions can be further suhdivided
into two groups: 1) unconditional branch instructions
and 2) test-and-branch instructions.

Unconditional Branch Instructions

These instructions, when executed, unconditionally
cause transfer of program control to the instruction
contained in the memory location specified by the oper-
and address. Operands can specify actual or GAP
symbolic addresses.

BRU Y X 2800000 word Times: 1

Funetional Description: BRANCH UNCONDITION-
ALLY. Control is transferred to the instruction at
memory location Y (Y becomes the address of the next

instruction)., Ii this instruction is modified auto-
matically, all 15 bitsof the P counter are altered by the
sum of bits 7-19 of the T register and by bits 5-19
of the specified X register. If no modification, then
only 13 bits of the P counter are altered, ,

Example: Branch unconditionally to the GAP symbolic
location STORE, Assume that STORE has been as-
signed the octal address 1768g by GAP and that the
BRU instruction is located in memory location 004604,

GAP Coding:
Symbal Opr Qperand X
|I,|3 ‘T,EG R |z;|3|nlu;|ain|w!|e za
0 04 68 0iBRUI|S.T OR.E
P Counter Contents in Octal
Before execution: [00461 | I l
After execution: I 01766 —I | l

Comments: Note that, before execution, the P counter
has already been stepped to the address of the next
sequential instruction. BRU modifies the P ecounter

to transfer control to the instructionlocatedinaddress

01766g. Note that automatic address modification is
possible.
SPB Y X 0700000 Word Times: 2

Functional Description: STORE P ANDBRANCH. The
memory location of the SPB instruction (held in bits
5-19 of the P counter) replaces the contents of bit
positions 5-19 of the specified modification word {of the
current modification group, for systems having the
additional meodification group feature). Bits 0-4 of
the modification word are automatically set to zero.
Control transfers to the instruction held in memory
location Y. The P counter is not incremented-during
an SPB instruction.

Example: Store P and branch. Store the location of
the SPB instruction 2676ginX register 3 and branch to
the instruction held in GAP symboliclocation RERUN.
Assume that GAP has assigned octal location 05004 to
the symbol RERUN.

GAP_Coding: _
Symbol Opr Operand X
|f;!3541|—5iu & % 0 1.1';|3||4]-Hj_\e||71_ta||9 2t
026 76|SP BIRERUN 3

P Counter and X Register Contents in Octal

P 0003
Before execution: 026176 [rRPPPY?
After execution: 00500 0002676

Comments: SPB cannot be automatically modified be~
cause bit positions % and 6 are used to specify the X
register to receive the SPB memeory location.

Test-and-Branch instructions

A test-and-branch instruction causes a check of the
status or contents of a central processor indicator or
register to determine if the test condition is true or
false. If the test is true {condition exists), the central
processor executes the next sequential instruction; if
the test is false (condition does not exist), the central
processor skips the next instruction and executes the
second sequential instruction.

Ble-229

69

The tested registers are unchanged by the test: tested
indicators may or may not change, depending upeon the
test andthe indicator status. Test-and-branchinstruc-
tions affect only the P counter. Ifthe condition tested
is true, the P counter is automatically increased by
ane, as in non-branch instructious; if the condition
tested is false, the P counter is increased by two,
thereby skipping an instruction.

Test-and-branch instruections require no operand
address; they can be followed sequentially by a BRU
instruction specifying the transfer address. For con-
venience, GAP also permits the use of relative and
symbolic addressing with test-and-branch instrue-
tions, as illustrated in the examples following the
instruction descriptions.

BOD 2514000 Word Times: 2

Functional Description: BRANCH ON ODD. The A
register is tested for an odd value: A (19) contains a
1-bit for all odd values,

BEV 2516000 Word Times: 2

Functional Description: BRANCH ON EVEN. The A
register is tested for an even valur: A (19) contuins a
0-bit for all even values.

BZE 2514002 Word Times: 2

Functional Description: BRANCH ON ZEROQ. The A

BOV 2514003 Word Times: 2

Functional Description: BRANCH ON OVERFLOW,
The averflow indicuator is tested for the ON condition.
If ON, theindicatoris antomatically turned QFF and the
next sequential instruction is executed, If nooverflow
occurred, the second sequentinl instruction is exe-
cuted.

BNO 2516003 Word Times: 2

Functional Description: BRANCHON NOOVERFLOW,
The overflow indicator is tested for the OFF condition
(it overflow occurred, the indicator is automatically
turned QFF),

If no overflow occurred the next sequential instruction
is executed. If overflow occurred the second sequen-
tial instruction is executed.

BPL 2516001 Word Times: 2

Functional Description: BEANCH ON PLUS. The A
register is tested for a plus sign in the sign bit posi-
tlon. If the signisplus, the next sequential instruction
is executed. 1f minus, the secand sequential instrue-
tion is executed.

BMI 2514001 Word Times: 2

Functional Description: BRANCH ON MINUS. The A
register is tested for a minus sign inthe sign bit posi-
tion, If the conditiontestedis true, the next sequential
instruction is executed. If false, the second sequential
ingtruction is executed.

register contents (8, 1-19) are tested for 0-bits in all
positions.

BNZ 2516002 Word Times: 2

Functional Description: BRANCH ON NON-ZERO. The
A register contents (8, 1-19) are tested for 1-bits in
any positions.

BPE 2514004 Word Times: 2

Functional Description: BRANCHONPARITY ERROR.
The parity alarm indicator is tested forthe ON condi-
tion., If a parity error occurred, the indicator is
automatically turned OFF and the next sequential in-
struction is executed; if no parity error occurred, the
second sequential instruction is executed. Note: If
the control console parity alarm switch is in the
STOP ON PARITY ALARM position and aparity error
oceurs, the parity alarm indicator turns on and the
central processor halts. If the parity alarm switch
is in the NORM position, a parity error will turn on
the parity alarm indicator but processing will con-
tinue. This permits programmed interrogation of the
indicator with a BPE or BPC (below) instruction and
optional branching to a corrective routine.

BFC 2516004 word Times: 2

Functional Description: BRANCH ON PARITY COR-
BRECT. The parity alarm indicator is tested for the
OFF condition. If parity is correct, the indicator
remains OFF and the next sequential instruction is
executed. If a parity error cccurred, and the parity
alarm indicator is ON, it is turned OFF automatically
and the second sequential instruction is executed. See
Note under BPE, above.

Ble=225

70

Example: Test the A register contents for a positive
value; if negative, test for an even value; if odd, test
for zero; if not zero, store A in symbolic location
RESULT. Assume guantity to be testedhaspreviously
been loaded into the A register and TEST begins in
location 0211g.

GAP Coding:
CSveebod | Oer] Opernd X
SR RN SRR S RERIN RO B
T ES TBPL|
BRUPLUS, .,
BRU[ZER O 1
BE VI | AU .
; BRUIE VEN . . .
STAIRES UL T

Comments: If the number inthe A register is positive,
the P counter is not stepped and the instruction at
TEST+1 causes a transfer to symbolic location PLUS.
If the number tested is negative, the P counter is
stepped to TEST+2, which causes the number o be
tested for zero. If zero, again the P counter is not
stepped and control transfers to symbolic location
ZERO. I not zero, the P counter steps to TEST+4 and
the number is tested for an even value. If even, the P
counter is not stepped and control transfers to loca-
tion EVEN. If not even. the P counter is stepped +1
and the contents of the A register are stored in sym-
bolic leeation RESULT. Omne result of the series of
instructions is to store only negative odd numbers in
location RESULT.

* CAB Y X 2100000 Word Times: 2tod

Functional Description: COMPARE AND BRANCH,
The contents of the A register are comparedalgebrai-
caily with the contents of location Y. If the contents of

Y are greafer than the contents of A, the next instruc-
fion in sequence 1s executed. If the contents of ¥ are

equal to the contents of A, the next instruction is
skipped and the second sequential instruction is exe-
cuted. If the contents of Y are less than the contents
of A, the nexttwoinstructions are skippedand the third
sequential instruction is executed.

Example: Compare the contents of symbolic location
TEST with the contents of the A register. If TEST is

greater than A, go to symbolic location MORE for next

instruction. If TEST equals A, goto symbolic location
EQUALS, If TEST islessthan4, go to symbolic loca-

tion LESS. Assume CAB is in location 0123g.
GAP Coding:

Symbo! Ope N ﬂ_.OEf_:\r.ancI_ [
EXERTENEY B S KRS R EEEL AN PR LR

ANSI[C ABTEST.

. __|BR UM ORE
—————_ ._|BR UJE QU ALS :
| . L.E ss|lapp|3 4 |
S I |

Registers Affected:

P Counter in Qctal

Before execution: = ANS
After execution:
Y > a - ANS+]
Y = A |00_00125| = ANS+2
Y<TA = LESS

* DCB Y X 2200000 Word Times: 2to6

Functional Description: DOUBLE COMPARE AND
BRANCH. The contents of the A and Q registers are
compared algebraically with the contents of memory
locations Y and Y + 1. If the contents of Yand ¥ + 1
are greater than the contents of A and Q, the next in-
struction in sequence is executed. I[fthecontents of Y
and Y + 1 are equal to the contents of A and Q. the com-
puter skips the nextinstruction and executes the second
sequential instruction. If the contents of ¥ and ¥ + 1
are less than the contents of A and Q. the computer
skips the next two instructions and executes the third
sequential instruction. Y should be an even location.
If Y is odd, ¥ and Y are compared with the contents of

A and Q. The signs of Y+1 and Q are ignored.
Comments: Both the DCB and the CAB instructions

provide a ‘three-way compare’ capability. CAB pro-
vides of single-length word comparisons, while DCB

* This instruction is an optional feature,

RE-998
* I AR
WIS ™ A0

71

compares double-length words. In both instructions
the effect on the P counter is similar:

Y > A {or Aand Q) P unchanged

Y = Afor A and Q) Step P + 1

Y< AforAandQ) Step P + 2

MODIFICATION INSTRUCTIONS

INX K X 1400000 Word Times: 3

Functional Description: INCREMENT X, Thisinstruc-
tion adds the number K (bit positions 7 through 19 of the
I register) to the contents of the specified X register
{bit positions 5 through 19). The result replaces the
contents of the X register (positions 5-19); any carry
fron position 5 is dropped. Noautomatic modification
is possible, X register locations are 0000 through
0003, or 0000 through 0127, if the additional modifi-
cation groups are available,

Example 1: Increment X register 0002, which contains
51210 ;:15003), by 1.

GAP Coding:

Symbol QOpr Cperand X
1[2|!]4|5|s B8 18 |2I:a:|tlls|l6 R D
RO N X)L . |2

X Register Contents in Octal

0002
0001000

[ooo1001 |

Before execution:

After execution-

Example 2: DecrementX register 0003, which containg
10010 {144g), by 6 {same as incrementing by 8186
or 17772g).

X Register Contents in Octal

0003
Before execution. [0600144 }
After execution: 0020136

Comments: If INXisusedtodecrementthe X register,
a carry is generated into bit position §. This 1-bit in
position & does not affect BXH or BXL instructions
{described later), because thege commands compare
bit positions 7 through 19 only. However, if the de-
cremented contents of the X repister are used to modify
an address, the carry into position 6 will affect the
modification. Thisisbecause X registerbits 5 through
19 are used to modify the operand address. Also,
INX should be used with caution tozeroan X register;
incrementing or decrementing the register by the
quantity required to set it to zero actually sets the
register to 8192 (1-bit in position 6), The LDA
or LDX ZERO instruction is recommended for zero-
ing an X repister,
X Register Contents

85 1 5 6 7 19
T) e i
zzez2lll HREEE
LN A
Affects BXL and
BXH instructions
\. y y
Modified by INX instruction and
used for address modification
BXH K X 0500030 Word Times: 3

Functional Description: BRANCH IF X IS HIGHER
THAN OR EQUAL TO. If the contents of the X register
{7-19) are greater than or equal to the constant K, the
next sequential instruction is executed; if less thankK,
the second sequential instruction is executed. X is
unchanged. No automatic modification is possible. X
register locations are 0000 through 0003, or 0000
through 0127 if the additional modification groups are
available.

Example 1: Branch if X is higher than or equal to 4.
Assume that X register 0002, which contains 6, is to
be used. Asasume that BXH is inactual memory loca-
tion 01 638.

Symbol Opr Operand X

|[2|3|4i5io NN |2l|[13|l4]|5:‘6|l?|\ai|9 ;r._-:]

_GAP Coding: e B X H|4.]2
Symbol Opr Operand X FI.CA B RU|O.7.77 RV
sles[a[efoleyofoofna]oefrafrajrajev]ie]uo]ze S TA|ITEMP
. _ |1 NX|818.6 . 3 é SNSRI

o @
(@ [_3 - (5 7 :_LIJ

12

P Counter Contents
in Octal and Symbolic

Before execution. 0164 = FICA
after execution’ 0164 | - FICA

Example 2: Braneh if X is higher than or equal to 4.
Assume that X register 0002, which now contains a 3,

is to be used. Assume that BXH is in actual memory
location 0163g.

BXL K X 400000 Word Times: 3

Functional Description: BRANCH IF X ISLESS THAN.
I the contents of the X register (7-19) are less than the
constant K, the next sequential instructionis executed;
if greater than or equal to K, the second sequential
instruction is executed. X is unchanged. No auto-
matic modification is possible. X register locations
are 0000 through 0003, or 0000 through 0127if the ad-
ditional modification word groups are available.

Exampie 1: Branch if X islowerthan 5. Assume that
X register 0003, which contains 6, is to be used.
Assume that BXL is in actual location 0014g.

_GAP Coding: _GAP Coding: _
Symboil Opr Operand X Symbol Qpr _9?1'_&'_"‘]_ X
SIS SIS B (M el) N ENIERENCSES KNI SRR
.. iBXHI4. B X LI5S, . .._ _.13
FICA_ __|BRUOT777 MO D BRUjl14 1 1
e |8 TAITEMZP e S TAITEMP _ ..
B U A TR I (.
b - — v 0 pb—————— A — —4 - - ! 1 L

P Counter Contents
in Octal and Symbolic

Beiore execution. 0164

FICA

After execution:

0165 FICA+1

Comments: Note, in example 1, that because the tested
condition is true, the P counter is not stepped to the
second sequential instruction. [Instead, the next in-
struction is the unconditional branch (BRU) which
transfers control to the instruction at 0777. 1In
example 2, the tested condition is false; that is, the X
register contents are not higher than 4. Hence, the
P counter, which has already been stepped once, is

stepped again to 0185 and the unconditional branch is
skipped.

A BXH instruction is generally, but not neceasarily,
followed by a BRU instruction specifying the address
of the first instruction of the branch sequence.

If an optional modification word group is to be used,
the BXH instruction must have been preceded by an

SXG instruction, which selects the desired modifi-
cation word group.

P Counter Contents
in Qctal and Symbolic

0015 = MOD

Before execution:

MOD+1

After ezecution; 0016

Example 2: Branch if X is lowerthan 5. Assume that
X register 0003, which contains 2, is to be used. As-
sume that BXL is in actual location 0014g.

GAP Coding:
Symbol Ope Operand X
0 EN YIRS NN Ak KD) AU LN KD EC
. BXLis. |3
MO D B RU/1 4 1 1 .
8§ TA|[TEMP

e ——d -

'&--._4/.._"\
i
i

P Counter Contents
in Octal and Symbolic

Before execution- 0015 = MOD

After execution:

f]

MOD

8295

"y

73

Comments: In exaniple 1, the tested conditionis false;
that is, the X register contents are not lower than 5.
Hence, the P counter is stepped anadditional location,
and the BRU instruction is skipped. Inexample 2, the
tested condition is true; the X register contents are
lower than 5. Thus, the P counter is not stepped and
the next instruction executed is the BRU, which trans-
fers control to the instruction at actual location 1411.

The BXL instruction is generally, but not necessarily,
followed by a BRU instruction for the branch sequence.

If an optional modification word group is to be used,
the BXL instruction niwust have been preceded by an
SXG instruction, which selects the desired modification
word group,

LDX Y X 0600000 Word Times: 3

Functional Description: LOAD ¥, The contents of
memory location Y (8, 1-19) areloaded into register X
(S, 1-19}. Y is not affected.

Example: Load X with the contents of symbolic loca-
tion SET1. Use X register 0003. Assume SETI con-
tains 0000001,

GAP Coding:
Symbol Opr Operand X
T[:|:]a':s:r, NENEE EEE DRI
LDX|[SE T 1 , 3

Memory and X Register
Contents in Octal
SET1 0003

[0000001 | [~ |

0000001] | 0000001 |

Before execution

After execution:

Comments: This instruction cannot be automatically
address modified. X registers inoptional modification
word groups can be used, if LDX is preceded by an
SXG instruction specifying the desired group. LDXis
useful in initializing an X register.

Example: Store X register 0002 contents in symbolic
location RESET. Assume 0002 contains 0135'?468.

GAP Coding:

Symbol Opr Qperand X
112|314[!\io L lz'lﬁ'|d|l5|\c||?|lu_|ﬂ z0
S TXIRESET |2
Memory and X Register

Contents in Qctal

__RESET 0002
Hefore execution: ? _J 0135746
After execution: 0135746 0135748

Comments: This instruction cannot be auvtomatically
address modified. X registersinoptional modification
word groups can beused, if8TX is preceded by an SXG
instruction specifying the desired group.

85TX Y X 1700000 Wword Times: 3

Functional Description: STORE X. The contents of
register X (8, 1-18) are stored in memory location Y.
X is not affected.

* SXG Y 2506YY3 Word Times: 2

Functional Description: SELECT X REGISTER GROUR
The modification word group {00-31) specified by Yis
selected and remains selected until another SXG in-
struction is given. After agivengroupis selected, all
instructions referencing an X register will refer to one
of the words within the selected modification group.

Example: SelectX register group 27 so that subsequent
instructions containing X modification coding {bitposi-
tions 5 and 6) will refer to memory locations 0108
through 0111.

GAP Coding:

Symbal Opr Qperand X
|]2|3“:115[e INEREL lz'!ia|nlu|\si|7l\a||9 0
- s x G2
Subsequent
Instruction
Bit Positions Modification Word
5 6 Selected (Decimal)
0 0 0108
¢] 1 0109
1 0 G110
1 1 0111

* This instruction is an optional feature.

Comments: After execution of the §XG instruction,
subsequent instructions containing 01, 10, or 11 in bit
positions 5 and 6 will reference memory location 0109,
0110, or 0111 until another SXG instruction selects
another modification word group. X registerinstruc-
tions {IN¥X, BXL, BXH, LDX, and §TX) containing 00,
01, 10, or 11 will reference memory locations 0108,
0109, 0110, or 0111. Note that the location specified by
00 X register coding (0108, in this case) has the same
properties as location 0000,

The decimal locations of the modification words sel-
ected by the SXG are readily computed by multiplying
the modification word group number by 4 and adding
the ¥ register coding of the instruction in question to
the result.

For example, assume thatanSTA instruction specifies
modification word 3 (11) and that a previous SXG in-
struction selected modification word group 18. To
determine the actual location of the modification word,
multiply 18 by 4 (piving 0072) andadd 3 (giving location
0075).

PROGRAMMING 16K MEMORY
SYSTEMS

The GE-225 information processing system is avail-
able with a 16k (16,384 word) memory which is
regarded by programmers as being divided into two
basic parts: the lower 8k memory and the upper 8k
memory, referred to as the lower bank and the upper
bank. The lower bank is considered to be memory
locations 0000 through 8191, and the upper bank
locations 8192 through 16,383. In programming 18k
systems, accessing techniquesand special restrictions
as to instructions and software use must be considered.

0000 LINKAGE

] READ-WRITE AREAS
LOWER MEMORY

PACKAGED SUBROUTINES

! WORKING STORAGE

8191 AND CONSTANTS
8192
1 PROGRAM

UPPER MEMORY

TABLES AND
ARRAYS

16383

Figure 25. 16k Memory Layout

In addition, the proper allocation and use of memory
becomes essential. Figure 25 illustratesanefficient
and economical memory layout that aliocates linkage,
read-write areas, special subroutines, working stor-
age and constants to lower memory and places the
operating program and program subroutines in upper
Memory. Using memory in this way minimizes
indexing or address modification operations.

Addressing the Upper Bank

In the 16k system, an operand address regquires a
fifteen-hit addressing capability, as opposed to a
thirteen-bit 8k address. Thus, memory locations
00000 through 08191 in the lower bank can be ad-
dressed directly, but memory locations 08192 through
16383 must be accessed through address modification.

When maodification is used, both the P and I registers
which possess 15-bit address capability, are affected.

When an instruction is modified, the 15-bit constant
in an index word (bits 5through 19) is added to the 13-
bit operand in the I register. After this addition, the
instruction actually executed has an effective operand
of 15 bita.

An example using address modification to access the
upper bank is shown by the coding:

Symbal Gpr Dperand x NEMA
1 ;_,_'T'_.",'"_: T i Tor e v sl [m T T

R s
U PFPB NEK bEC 1.5 2 VEPER BANK CDNSTANT}

- b e o — = |
I

LX|UP BNEK 2| SET INDEX TWO - 8192

. e

The execution of the instruction in line two places the
Constant 8192 in index word 2. The instruction of line
3 is modified by index word 2 and gives an effective
address of 8192+6, or 8198, which is the desired upper
bank memory location.

Index word 2 can now be nsed wheneveraccess to data
in an upper bank memory location is desired by the
programmer. However, if the program is executing
instructions in the upper bank, the P counter remains
set for upper memory andis incremented in the normal
manner without the need for modification.

Most GE-225 instructions access only memory loca-
tions in the lower bank when not indexed, but can access
the upper bank when properly indexed. Figure 286

contains a brief desecription of the effect of GE-225
instructions when addressing 16k memories. Further
explanations are given for specific commands.

Commands

Behavior

1. MOV and controller commands

2. General commands

3. Indexed BRU

4. SPB and unindexed BRU

5. LDX and STX

6. All others

1. Any memory location may be
accessed with a 15-bit direct
address.

2. The operand address is restricted
or nom-existent, independent of
memory size.

3. Any memory location can be
accessed through automatic
address modification, and the P
counter is set to obtain successive
instructions from the memory
bank selected by the BRU.

4. The 13-bit address applies only
to locations in the memory bank
in which the instruction is stored.

5. The 13-hit address always applies
to locations in the lower memory
bank.

6. Unindexed instructions access
locations in the lower memory
bank; indexed instructions may
access any location via automatic
address modification.

Figure 26. Instruction Characteristics when Addressing 16k Memories

Executing Instructions in the Upper Bank

Control can be sghifted to instructions contained in
memory locations in the upper bank of a 18k system
by a suitably indexed BRU instruction. The effect of
an indexed BRU is to set the two high-order address
bits of the P counter. Noother instruction may accom-=-
plish this (P automatically advances from 8191 to
8192 when no branch intervenes), Unindexed BRU
instructions do not change the high-order addressbits
in the P counter. Also, anunindexed BRU causes sub-
sequent instructions to be taken from the bank con-
taining the BRU. Control remains in the upper bank
until the next indexed BRU is executed, despite inter-
vening SPB and unindexed BRU instructions.

Example 1: Change control from the lower bank to
memory location 12000 in the upper bank. Assume
index word 2 contains the constant 08192,

GAP Coding:
Memory Opr Operand X
Location INIEREE Iz]l!lld[!!llﬁi!?llslln 20
"B RU[3.8 0.8 R
1756

Next Instruction Location is 12000,

Subsequent instructions executedare in the upper bank.

Example 2: UpperBankExecution. Index word 2 con-
tains 08192.

GAP Co :
Memory Opr Operand X
Location INEREE |zll:|ta[|5lls|l7ilella 20
12350 B RU|3 80 8 |2

Next Instruction Loeation is 12000

Execution of instructions continues in upper bank.

Example 3: Upper Bank Execution. Indexword 2 con-
tains 00000,

Memory Opr Opearand *
Location NN R AR
BR U|3) 8 0 B S 2

12250

Next Instruction Location is 03808 _

bie=229

Controls are changed to the lower bank starting at
memory location 03808,

In summary, it is essential that the programmer re-
member:;

1. Only a modified BRU instruction can direct
the central processor to begin executing in-
structions in the upper bank. The BRU must
be moedified by the necessary increment, as
illustrated in example 1, above.

2. Once operating in the upper bank, subsequent
BRU instructions do not change the setting of
bits 5 and 6 of the P counter unless another
properly indexed BRU instruction is €ncoun-
tered. Also,onceoperatingineither the lower
or upper bank it is not necessary to continue
indexing to keep control in thatbank. Modifi-
cation is only necessary whenbranching from
one memory bank to another.

SPB Instructions

An SPB instruction c¢an beused, atnoincrease in word
time, in the upper bank to refer toan upper bank sub-
routine. However, anSPB instruction in the upper bank
cannot be used to refer to a subroutine in the lower
hank without first modifying a BRU instruction. The
sanme rule exists with respecttousing anSPB instruc-
tion in the lower bank to refer to a subroutine in the
upper bank.

Example: Assume index word 2 contains 08192. Use
an SPB and BRU inthe lower banktg access a memory
location in the upper bank.

GAP Coding:
Memary Symbal Opr Cperand L4
Location J 1] 2, 3 a] s a2 @ so]ve,ia;da ss va a7 18] ti]ea
1750 . S PBUPPER, 1
1751 UPPER B R U|3 8 0 8 2

Controls are changed from the lower bank to the upper
bank with the instruction in memory location 12000
being executed next. The return from the upper bank
routine {after execution) to lower bank memory leccation
01752 can be accomplished by a BRU:

GAP Coding:
Memory Opr Operand x
Location [NEE |z[u!|4]le|le||?||a||n 20
12120 |BRUJ2 1

L

Next Inatruction Executed la 01752,

An SPB command executed in theupperbankperforms
exactly like an nonindexed BRU.

Example:
GAP Coding:
Memory Opr Operand X
Location NENED uKuln]wl\ainlujlu 26
12228 SPB|2 00O ~ 1

Next Instruction Executed is 10192,

The effective address of the next instruction executed
(10192) is formed by bits 7 through 19 of the I register,
pius bits 5 and 6 of the P counter with bits & through 19
of P stored in the index word.

The programmer should note that since only SPB and
BRU instructions have operand addresses which relate
directly to P counter contents, only the perform as
described in the previous paragraphs. All other GE-
225 instructions with 13-bit operandsaccesslocations
in the lower bankunless they are appropriately indexed
for the upper bank, regardless of where they are
located.

LDX and STX Instructions

Index words are normally set and stored with LDX
(Load Index} and 8TX (Store Index) instructions. These
instructions transfer a 20-bit GE-~225 word between a
specified memory location, for which a 13-bitoperand
address is provided, and a specified indexword. Since
the index word selected represents a sending or
receiving location in a data transfer process, auto-
matic address modification does not occur on LDX and
STX operand addresses. The 13-bit address field
means that LDX and STX instructions mayaccessonly
locations 00000 through 08191, Although these instruc-
tions may be stored in and executed from the upper
bank, they always refer to data stored in the lower
bank.

Memory Opr Operand X
Lacation L2 [¢ [e [2] ape s v [vs e]2n
12250 YLD X6 .5 0 .0, N I
R

6500 DEC |0, s

77

STO Instruction

The STO instruction is used for direct instruction ad-
dress modification., Since the standard operand ad-
dress [ield is thirteen bits, STOisdesignedto replace
the low~order thirteen bits in the specified memory
location with the low-order thirteen bits of the A reg-
ister. In 8k memories, STO has virtually no special
limitations. In 168k niemories, STQ cannot handle
MOV or controller commands addressing the upper
bhank, nor is it adequate for direct address modifica-
tion in other instructions when the address being
stored is (or may be} in the other bank.

Example: The contents of index word 2 = 08192,
GAP Coding:
Memory Opr Operand X
LDCEI.U.OI] AL I2||3:11||5!|f-||'-'|lr1||9 0
12160 LDAJ3 O 0.0 12]
12161 S P B|* + 1 1
12162 5T 0|2 1
12163 A DDID.

Designing Subroutines for 16K Memories

Like 8k programs, subroutines and otherprogram ele-
ments inlower 8k can access data and constants and set
program switches without employing index registers.
Subroutines in the upper bank must either useindexes
or utilize the lower bank for data, constants, and
gwitches, LDX and STX are essential for indexing
procedures when extra index groups are employed.
But LDX and 8TX can only access the lower bank. It
is very important to remember this fact whendesign-
ing subroutines for the upper bank, Therefore,
constants should always be in the lower bank,
Subroutines in general contain their own constants and
working storage areas. If they are to be assembled
into the upper bank, they must employindexzes to refer
to such values, and they must do so without LDX and
STX. One of two rules is necessary: either subrou-
tines are located in the lower bank, or else subroutines
are written to employ a specific index group, whose
absolute core locations are used in LDA and 5TA in-
structions with LDX and STX prohibited,

16K Memories and Prior Software

Subroutines which have been written for the GE-225
with 8k memories in mind must usually be modified in
order to function properly with 16k memories. There
are several reasons for this;

1. Negative indexing, if used, is accomplished by
simply adding the 2's complement of the desired

decrement so that a carry is generated into bit
position 6. This hit is effective during address
modification because bits 5 through 19 are trans-
ferred during modification. Programs which use
negative indexing do not perform properly when
they are run on 16k systems.

2. The 8TO instruction can bhe employed extensively
to set up data buffer addresses in pertinent com-
mands in input-output subroutines. STO does not
handle 14-bit addresses, so that such routines
must either be medified or else be restricted to
buffers in the lower 8K bank.

3. Subroutines usually contain their own constants
and working storages, and do not access them
with the aid of index registers. They, therefore,
must be located in the lower bank.

4. Subroutines which call other subroutines have not
been designed to go through a ‘branch relay’ pro-
cess. Therefore, nested subroutines must all be
placed in the same memory bank, presumably the
lower bank.

5. Indirect arguments are often processed with the
use of the STO instruction. Subroutines which have
employed this mechanism either mustbe modified
or else must restrict their indirect arguments to
the lower bank.

6. Subroutines frequently have usedthe LDX and STX
instructions which can only access the lower bank.

7. In general, most existing routines and even basgic
card formats assumed a 13-bit operand address
field. The 16Kk memories require fourteen bits for
the operand address field.

Programming for 16K Memories

The following list represents a summary of important
points to be remembered when programming the GE-
225 with a 16k memory:

1. Unindexed instructions, such as LDA, STA, and
ADD, access the lower bank only.

2. Operand addresses of MOV and controller com-
mands cannot be indexed but contain the full 15-bit
direct addresses.

3. Some subroutines work only in the lower bankand
some only in index group zero.

4. An SPB instruction does not cross the memory
interface (lower-to-upper or upper-to-lower) di-
rectly.

5. Subroutines and other program elements mustnot
straddle the memory interface; thatis, they should

BE-225

be lacated entirely in either the lower or upper
bank (subject to the restriction in item 3 above).

6. Instructions LDX and STX always function as if
only the lower bank were present.

7. S8TO stores only 13-bit operand address fields.

PROGRAMMING CENTRAL PROCESSOR
OPERATIONS

Figure 27 illustrates a portion of the flowcharting for
a rejected parts cost program. GAP coding sheets
corresponding to that portion of the flowchart are
shown in Figures 28 through 31. The cading shown
was chosen to illustrate typical usage of central pro-
cessor instructions rather than to show recommended
methods for programming specific problems,

In Figure 28, lines 2 through 10 initialize the input
and cost areas by storing zeros in the affected
locations. Note the use of index word 2 to loop
through lines 4 through 6 until the entire block of 200
locations, starting with symbolic nddress APART, is
filled with zeros,

In Figure 29, lines 2 and 3, SW43 is interrogated. If
SW#3 is OFF (contains zeros), calculation of DAREA
parts follows; if SW#3 is ON, the BNZ in line three
transfers coatrol to BYPASS (line 3, Figure 30),
DAREA calculations are skipped, and EAREA
calculations are made.

Line 20 of Figure 29 shows a typical method for
exiting from the main program to a subroutine after
making provision for returnto the exit point upon com-
pletion of the subroutine. The SPB NPRIBD causes
an unconditional branch to a Binary-to-BCD conversion
routine beginning at symbolic location NPRIBD (not
shown) and causes the P counter contents (location of
the SPB) to be placed in index register 1. The final
instruction of the NPRIBD subroutine is a BRU 0001,
madified by index register 1, which returns controlto
the instruction following the SPB.

Following the EAREA parts caleulation in Figure 30
is a test for overflow. Ifanoverflow condition exists,
line 11 causes the control location to he stored in
modification word 1 and control transfers tc OVERFLG,
line 2 of Figure 3G, After overflow recovery the BRU
0002, molified by index word 1 returns to the main
routine, line 13, Figure 30,

79

bE-229

1

Zero Input
and
Cost Areas

1

ﬂ#s/

¥

¥

Calculate
EAREA Cost

¥

Adjust Cost
—»ETOTAL

|

Calculate
AREA#2 Costs

BOV

YES

OVERFLOW
SUBROUTINE:
Construct as

Double Length

Store Result
—# TEMP

'

Set SW#4
ON

-l

NO

L 4
Continuation

Calculate
DAREA Rejected
Parts-Total
Cost—»=DTOTAL

4

Calculate
Average DAREA,
Hejected Part
Cost

SUBROUTINE:
Convert DAVG
from Bin to BCD
— DAVG

Figure 27, Rejected Parts Cost Flow Chart

80

GAP Coding:

LTN It . GECODER ‘-Hﬁeje‘(r:tec{tPar’ftzs Cost _1 ”1';‘9/65_ ::“ﬁ(}‘1
_ Sywmbol Cpr Cperand x REMn#KS e Sequence
- R RN LY K2 A N £ 3 G N
1]t e 00 R O MA[N PROGRAM omcm 1t 000
2 Z E_R.Ql._k___._... _ SR _ 1,005
3 2 e | _ZERO INDEX WORD TWO. . _ .__ _ 1.,0.,1 0
4 APART, | 2] ZERO INPUT AREAS) . 1.0.1.5
5 2 _he - - 3 1. 0.2 0
6 zoo qzl B) B i025
7 « -3 1 0.3 of
8 ZEROCG . |2 _ . e 1,035
¢ ACO S T __ |, |2| ZEROCOST AREAS] 1040
10 2 S I R 1.0 45
11
Figure 28, RPC Program - Initialization
GAP Coding:
PROGRAMMER P AM OATF PAGE
GE CODER OG;{eiecF:gg ggrts Cost T 1/9/63 i 28
Symbal Qpr Qperand H REMARKS Sequence
l]:|s|-i|~!n D IR D DD I KL TS e |71 e 10e [#0
1 L DX|ZERO 2 | ZERO INDEX WORD TWO 1.2 5.0
2 LD alsw 3. SWITCH NO. 2 1.2 5.5
3 BN Z|BYPASS SKIP DAREA COST 1,2 60
4 LDAl# DPART NUMBER DAREA INDIVIDUAL PARTS 1,2 8.5
5 N E G ,) CONVERT TQ TWO'S COMPLEMENT FORM . 1.2.70
é sTOolL oo PD, SET UP NUMBER TIMES THRU LOOP 12,75
7Ibpc A LC LD A|DP ART, 2 | NUMBER OF EACH PART REJECTED 1.2 80
8 MAQ) 1,2.8 5
9 M P YDcosT 2 | COST PER REJECTED PART 1.2 90
10 X. A Q e 1, 2.9 5
i1 ADDIDTOTAL, 1. 3,00
12 | . § T A|IDTOT AL, | TOTAL COST DAREA REJECTED PARTS 1.3.05
13 . I N X1 1.3.1.0
4|t o0oPD |B. X L0 P _1.3.1.5
15 B.RUIBCALC 1.3 20
16 M. A.©Q e .1,3.2.5
17 D V.Dl#g DP.ART CALCULATE AVERAGE DAREA COST 1,.3.3.0
18 DADIADJ YU S T, ADJUST § 1.3,3 5
19 M. a9 e 1.3,4.0
20 S PBINPR,I BD . [1]|BIN-BCDCONVERSION ROUTINE 13,45
21 _ S TO|* + 3, L 1.3 5.0
22 lapDol .) 1 355
23 § T O]* +.3, , 1,3 6.0
24 L. D A[D, o AVERAGE COST DAREA REJECTS 1.3, 8,5
25 S TA|D AV G 1 370

Figure 29, RPC Program - DPARTS Calculations

BE-295

81

GAP Cading:

PROCHAMME R 3 IYETS T
GE Coder PHI;,::@AC"‘tel?iuga#rzts Cost 1/9/63 o 23
Symbol Qpr Cperand X REMARKS Sequence
1[:!:. NN BN uI\sl!A]!u[lail"]llln o | 31 ki3 1e|nlu[n]no
LD AJO,) 1.3 7.5
IS TAID AV G +.1 1.3 8.0
B YPASSI|LD AIEP ART, NUMBER EAREA PARTS 1.3 8.5
M A Q , , 1,390
M P YIECOST, COST PER FART EAREA 1.3 9 5
1%, A.Q . 1 4 0 0
L ADDIE A D J, | | EAREA ADJUSTMENT 1.4.05
STA|IET O T A L TOTAL ADJUSTED COST EAREA REJECTS 1,41 49
ADDIARE A # 2 | CALC AREA#2 COSTS 1,415
B O V| _— , 1,4 .20
§ PB|C VRFLO, 1 | OVERFLOW SUBROUTINE 1.4.2 5
BRU# 2C 08 T, | 1. 4.3 0
- DS TITEMEP. TEMPORARY STORAGE ,1.4.3.5
L DAONE) L .1 4 4.0
R STA|SW #4 SET SWITCH 4 ON L1 4,45
______ B RU|¥ 2C 08T, 145 ¢
{ ¢ . . "
DP A R.T B S s!13 0 s . L
" BRREM . N CONSTANTS AND SWITCHES 1.7 3 5
ZERO DDCO.)) 1 7.4.0
| O.N.E . _ |IpEC]L, 1.7.4.5
ADJ US T|ID DB CiS 00, L1 7 6 0
S W a2 D E C|0 1. 7.5, 8
5. W 4.3 D E clo.) 1. 7.6.0
(S W § 4 D _E c|o 1 7,85
Figure 30, RPC Program - EPARTS Calculations and Constants
GAP Cading: .
PROGRAMMER FeROGRAM naTg Aiab F
GE Coder - Rpjpr-lfl:'?ifrfq Ciost 1/9/63 er 20
Symbal Opr Qperand P L REMARKS Sequence
EESEVRIENES CIFCEEE) L RNy AL ENETEN A (L TR T T e
— R EM S | __OVERFLOW SUBROUTINE 2.4 0.0
OVRFLO|SRDI[1] N N 2.4.0_5]
C HS R 2 4.10
S RD|L1.8 2.4.1.5
B R VUI2 P _EXITO 2.4 20
K BR;S TR I P, . | i _BCD-BINCONVERSION ROUTINE 2.4 25
BR NPR I B D . BIN - BCD CONVERSION ROUTINE 2430
— NDIBT ART, _ . —_—

Figure 31. RPC Program - OVRFLO Routine

4295

82

5. DIRECT

GE-225 peripheral units can gain access to memory
either through the M and N registers or through the
controller selector and then the M register, as shown
in Figure 32, Peripherals connected to the M or N
register are deemed to have direct access to memory
and include the paper tape reader-punch, conscle
typewriter, card reader, card punch, and the console
switches. Operations involving these units are
discussed in this section. Other peripheral operations,
such as those invelving the DSU, high-speed printer,
magnetic tape handlers, document handlers, and
DATANET-15 terminals, are covered in the section,
Controller Selactor Operations.

INPUT-OUTPUT OPERATIONS

CONTROL CONSOLE OPERATIONS

The control conscle is a control center from which the
GE-225 operator has hoth manual control of processing
and visual representation of the operating status of
various registers and peripheral units.

Manual contro!l includes the initial reading intc memory
of the program, starting program execution, and
{as required) interrupting operation for checking or
other purposes. Manual control is accomplished
through the switches described on page 86. Visual

I
| |
I (]
[M B le» MRe " Card
N AU [Reg ¢ i Punch I
Reg A Reg i i
7 ; Y e |
----"-"-"-"-"rr-"""=—"="="="=-"="=-"=-"=-= - . Card |
- - - — = T ' Reader |
[Console I : |
: Switches | ! B
& |
: Indicators| Controller DIRECT ACCESS
| i Selector
|
I
! !
' PT Punch || To and from
| | Peripheral
I Gonsole | ! Controllers
} pewriter :
i
i

DIRECT ACCESS

Figure 32, Units Directly Accessing Memory

BE-2238

representation of register contents and status of oper-
ational units is provided by various lensed lights,
which are also desceribed helow, The control console
consists esseutially of & control and an indicator panel,
as illustrated in Figure 33, The upper two-thirds
of the panel contains most of the indicators, although
many of the switches in the control position serve
as indicators as well,

Alarm Indicators

At the top left of the console panel, Figure 33, are six
alarm indicators. Theseareturnedonif various error
conditions are detected during program operation. All
alarm indicators except the PRIORITY alarm are reset
(turned off) by the RESET ALARM switch.

PRIORITY ALARM. This alarm is turned on under
any of the following conditions:

1. The AUTO /MANUAL switch is in the MANUAL

position.

2. The STOP ON PARITY ALARM switch isengaged
and a pariiy error is detected.

3. The central processor does not have priority
(access to memory).

4. A card punch or card reader alarm condition has

occurred.

PARITY ALARM. If the STOP ON PARITY ALARM

switch is on when a parity error is detected, the cen-
tral processor will halt. The PARITY alarm can be
turned off by pressing the RESET ALARM switch or,
although not a common practice, by programmed
instructions. The PARITY alarm is turned on under
any of the following conditions:

1. The memory-checking cirecuits of the centralpro-
cesgor detect a parity error while the AUTO/
MANUAL switch is in the AUTO position.

2. The parity checking circuits associated with the
paper tape reader detect a parity error.
3. A parity error is detected as information is re-

ceived frem a controller through the controller
selector.

OVERFLOW ALARM. The central processor doesnot
hait on an overflow alarm. The alarm may be reset
automatically several times during a normal MPY in-
struction. The indicator can alsc be turned off by
depressing the RESET ALARM switch or by pro-
grammed instructions. The OVERFLOW alarm is
turned on under any of the following conditions:

1. The capacity of the A register is exceeded during
arithmetic operations.

2. An illegal divide is attempted.

QVER
FLOW

LaaT
FUNTH

CARD
AEACER

ECHG

FRIORITY LLERM

FARTY

L—1

CAAL
RELDER
RE&DY

CARALH
PUNCH
READY

DEC

N (14
MEGISTER] oNLY MODE

AEBDY

——

snvr

2100 000

OClIOO0 OO0 OO0
100000000 000000 OO0 000

AOO..O.......@O
300®0000000000000000®%

OO OOOP

14 15

" [F 5] L] 15 1] 17 12}]

14 15 B

STOF M|

FHf
oW auTo

INSTR

PARITY
ALAAM

RESET LIFAD RESET
AL LAW ARG 3

PUR

MANUAL

woRD

WCRM

[SYTART L g} ®rap }

OFF

Figure 33. The Control Console Panel

§E-225

B4

3. A 1-hit is shifted out of hitposition 1 of the A reg-
ister during a shift left operation.

CARD PUNCH ALARM. This alarm is turned on any
time a WCB, WCD, or WCF instruction is attempted
when the card punch is not in the ready condition. As
already noted, the PRIORITY alarm also comeson, and
the central processor halts. The alarm can be reset
only by pressing the RESET ALARM switch.

ECHO ALARM. This alarm is turned onwhen the cen-
tral processor makes anunsuccessful attempt to select
a controller through the controller selector. The ECHO
alarm light can be turned off only by depressing the
RESET ALARM switch. The alarm indicates any of
the following conditions:

l. The selected controller is busy {(delay not pro-
grammed),

2. An erroneous address was programmed, the ad-
dressed plug is not installed.

3. Controller is off line.
4. Power is off to controller,

5. Controller is malfunctioning.

CARD READER ALARM. Thisalarmisturnedon when
attempting to execute an RCB, RCD, or RCF instruction
while the card reader is not in the ready condition.
When the CARD READER alarm comes on, the
PRICORITY alarm also comes on and the card reader
and the central processor halt. The alarms in this
combination are reset only by depressing the RESET
ALARM switch. The reader can be ‘not ready’ for
any of the following reasons:

1. Card reader is not turned on.

2. Input hopper is empty.

3, A card is not positioned on the sensing platform.
4. Reader is busy (already reading a card),

9. A misfeed or card jam ocecurs.

Ready Indicators

The upper right corner of the control console contains
the ready indicators which are green. When the card
punch or card reader is ready to receive information
these indicators are on. 1If the equipmentis not ready
for operation, an attempt to use the equipment will set
an alarm indicator and halt central processor oper-
ation. The standard ready indicators are:

CARD PUNCH READY, This light reflects the status
of the card punch. If the cardpunch 18 not in an oper-
able condition when a punch instruction is attempted,
the ready light will be off and the CARD PUNCH and
PRIORITY Alarms will come on. The more common

conditions affecting the operating status of the card
punch are:

1. An empty input hopper.
2. A full stacker.

3. A misfed card.

4. A jamimed card.

5. A punch cycle.

6. An improperly seated chip box which inhibits
the turn on of power.

CARD READER READY. Turn onofthisindicator de-
notes the ready state of the cardreader. Execution of
a read instruction while this lamp is off causes the
CARD READER and PRIORITY Alarms tolight andthe
central processor to halt. The following conditions
affect operating status:

1. An empty input hopper.
2. A read cycle.

3. A misfeed.

4, A jam.

N REGISTER READY. This lamp indicates the readi-
ness of the N Register to receive input or transfer
output data. This register is used by the typewriter,
paper tape reader, or paper tape punch. If an illegal
code is placed in the N Register and a TYP command
is given, the N REGISTER READY light goes out and
stays out until a space Kkey is struck.

AIM {(AUTOMATIC INTERRUPT MODE), 1f the GE-225
system configuration includes the optional Automatic
Program Interrupt device, then this light {when ON}
indicates that control has beentransferredtoanexecu-
tive routine for servicing one or more peripherals
in a ready condition,

8K, This is the only red lampin the group. When 1it,
this lamp indicates that anly an 8K memory is in use.

DECIMAL MODE, IftheDecimal Mode optional feature
is included, this indicator will come onwhenthe com-
puter ocperates in the decimal mode.

MODIFICATION GROUP INDICATQORS

The five INDEX GROUP display lights are located below
the alarm lights and to the leftof the P counter display
lights. The lights are numberedone throughfive from
right to left. These five lights, read as binary digits,
indicate the modification word group that has been
selected by the program (Groups 0 through 31). Each
group has four registers, 0 through 3. When all lights

85

are off, group Zero is available without special selec-
tion. Only modification word group zero is standard
on the GE-225 systemy; additional groups areoptional.
Any time a light is on in the index group, an index
group other than zero has been selected.

P Counter Lights

Tue [ifteen display lights for the P counterare located
tu the right of the INDEX GROUP indicators They
are numbered, left to right, from 5 through 19, and
are arranged in groups of three to [acilitate reading
the binary numbers directly in octal notation. These
lights show the locution of the instruction which
appears in the I register. The P counter is useful
when debugping a program and when checking for cor-
rect operation after a manual branch command to a
particular program location.

Save P Switch

This switch permits manual return to a particular
position in the program after interruption to make a
correction, such as to introduce an instruction manu-
ally. The SAVE P switch, in the down position. pre-
vents the P counter from incrementing. When the
SAVE P switch is returned to the up {(normal) position
after manual operations, the program is ready to
continue from the place of interruption, When the
SAVE P switch is in the down position during the auto-
matic mode of operation, the instruction in the I
register is executed repeatedly.

| Register Lights

The 20 I register display lights are located below the
INDEX GROUP and P counter lights, and are numbered
from 0 to 19. Theydisplay the contents of the instruc-
tion register. Like the other register display lights,
they are easily readinoctalnotation. Following either
a program halt or a change of the AUTO/MANUAL
switch to the MANUAL position thel Register displays
the next instruction to be executed.

A Register Lights

The 20 A register display lights are located helow the
I register lights. They are numbered from 0 to 19,
and display the contents of the A register. These are
also readable in octal. By using the XAQ switch (des-
cribed later}, the A register lights can be used to
display the contents of the Q register, All data and
instructions fed manually into the central processor
go through the A register, and are entered by use of
the option switches.

Option Switches

The 20 option or control switches justbelow the A reg-
ister display lights are used to feed information into
the A register. Each of these toggle switches enters
information into the corresponding A register position.

The numbers 0 through 19 below the A register lights
also apply to the switches. When movedup, the spring-
loaded switches return automatically to the center
(normal) position. When moved down, they remain in
the down position until manually returned to the normal
position.

When the central processor is in the manual mode,
moving an option switchup causesa 1-bit to be put into
the corresponding position of the A register. This is
indicated by an A register display light. Moving an
option switch up has noeffect when the central proces-
sor is in the automatic mode.

Moving an oplion switch down when the central pro-
cessor is in the automatic mode causes a 1-bit to be
put into the corresponding position of the A register
at the time of a progranumed RCS instruction. Speci-
fied switches are leftin the down position while running
certain routines andwhile generuting GAP assemblies.

RESET A Switch

This switch is to the left of the option switches. It is
effective only when the central processor is in the
manual mode, Like the option switches, it is spring-
loaded in the up position, but not in the down position.
When nioved either up or down. it clears to zero the
contents of the A register, and turns off all of the A
register display lights.

Control Switches

A strip of switches along the hottom of the control con-
sole, and the SAVE P and RESET A switches just des-
cribed, give manual control over the central processor
and certain functions of peripherals. Eight of the
switches are the pushbutton type that are pressed
montentarily to be activated. Three double-label
switches are the rocker type with two positions. For
example, the AUTO/MANUAL SWITCH isplacedinthe
AUTO position by pressing the end that is labeled AUTO
and leaving that end in the depressed position.

PWH., ON. Depressing the PWR ON pushbutton turns
on DC power to the central processor, the control con-
sole, and the 400 card per minute reader. It is also
used as general reset for the central processor. The
pushbutton is alsoanindicator, for it lights when power
is on.

PWR, OFF, When DC power is on, depressing this
pushbutton turns it off.

RESET ALARM, This switch is effective only in the
manual mode. Depressing the pushbutton clears any
existing alarm condition. It turns off the alarm lights
and resets flip-flops so that the central processor can
continue operation. It does not clear the cause of the
alarm.

86

LOAD CARD. Thisswitchis effectiveonly in the man-
ual mode, Depressing the pushbutton initiates card
reader action and causes the reader to go through one
load and read cycle.

RESET P, This switch is effective only in the manual
mode. Depressing the pushbutton clears the P counter.

AUTQ/MANUAL, This two-position, rocker switch
selects either the automatic or the manual mode of
operation for the ceniral processor. When AUTO is
depressed, the central processor isplacedin the auto-
matic mode, and instructions are processed in a con-
tinuous sequence under program control. When MAN-
UAL is depressed, the central processor is placed in
the manual mode, and the program is executed one
step each time that the START switeh i5 depressed.
Setting the AUTO/MANUAL switch to MANUAL during
automatic operation causes the computer tohaltoper-
ations at the end of the iustruction or word being
executed, Putting the central processor inthe manual
mode causes the PRIORITY alarm light to come on,
The following operations can be performed only when
the AUTO/MANUAL switch is set to MANUAL:

1. Clear or set information into the A register with
option switches.

2. Clear alarm conditions with the RESET ALARM
switeh.

3. Reset the P counter with the RESET P switch.

4. Load a c¢ard manually, using the LOAD CARD
switch.

5. Transfer the contents of the A register to the
register using the A to I switeh.

6. Exchange the contents of the A and Q registers
using the XAQ switch.

INST/WORD., This is also a two-position, rocker
switch which is effective only in the manual mode. It
determines the length of the cycle of the central pro-
cessor during manual operations. When INST is
depressed, the ceniral processor executes one com-
plete instruction each time the START switch is
engaged. When WORD is depressed, only one word
time is executed each time the START swiich is en-
gaged.

START. In the automatic mode, depresgsing the START
pushbutton initiates action. After the operationbegins,
the program runs automatically and depressing the
START switch againhas no effect. Inthe manual mode,
depressing the START switch causes the execution of
one instruction or one word time, depending upon the
setting of the INSTR/WORD switch.

§F-225

A=>[(Ato]). This switch is effective only in the man-
ual mode. Depressing the A to I pushbutton transfers
the contents of the A register, including the sign bit,
to the I register. The contents of the A register re-
main unchanged, and can be cleared by toggling the
RESET A switch. The A toIswitch can be used to load
an instruetion manually into the Iregister orto correct
an instruction already there.

XAQ. Thisswitchiseffective only inthe manual mode.
Depressing XAQ ecauses an exchange of information
between the A and Q registers. That is, the contents
of A go into @ and the contents of @ go into A, This
permits observation/modification of the contentsof the
Q register. By using the RESET A switch and the
option switches, the operator canclearandcorrectthe
contents of the @ register while saving the contents
of the A register.

STOP ON PARITY ALARM/NORM. This is a two-
position, rocker switch. It determines the response
of the central processor to the detection of a parity
error. When STOP ON PARITY ALARM isdepressed,
the central processor halts each time a parity error
is detected and the PARITY and PRIORITY alarm
lights come on. When NORM (normal) is depressed,
the central processor continues operation, regardless
of parity errors, and the only indication of a parity
error is that the PARITY alarm light is turned on,
The setting of the STOP ON PARITY ALARM/NORM
switch is determined by the programmer. If he has
included remedial action throughout the program for
parity errors and provision for resetting the PARITY
alarm light, he can specify the setting of the STOP ON
PARITY ALARM/NORM switch to the NORM position.
Otherwise, he can have the program halt at time of a
parity error by specifying the setting of STOP ON
PARITY ALARM,

Manual Operating Procedures

The option switches on the console permit the manual
entry of instructions and data; the register indicators
permit the display of the contents of memery and reg-
isters.

MANUAL LOAD ANDEXECUTION OF INSTRUCTIONS,
Any instruction that is meaningful to the GE-225 syg-
tem can be manually loaded and executed as follows:

1. Set the INSTR/WORD switch to INSTR,
2. Set the AUTO/MANUAL switch to MANUAL,
3. Toggle the RESET A switchtoclearthe A register,

4, Load the octal equivalentof the instruction into the
A register.

5. Depress the A to I switch.

87

f. Toggle the RESET A switch and load any necessary
data into the A register.

7. Depress the START switch.

The central processor will execute the one instruetion
and halt,

TOADING DATA MANUAILY., When data is to be
luaded into memory, the following procedureis useful:

1. Bel the INSTR,-WORD switch to INSTR,

2. Set the AUTO/MANUAL switch

to MANUAL.

3. Toggle the RESET A switch.

4, Load an STA instruction in the A register (Store
A is an octal 0300000) with the memory address
where the data is to be stored replacing the right-
hand digits of the STA instruction.

5. Depress the A to 1 switch.

6. Toggle the RESET A switch.

7. Load the cctal equivalent of the data to be stored
into the A register.

B. Depress the START switch.
Load additional words by repeating steps 3 through 8.
EXTRACTING DATA FROM MEMORY. The contents of

a given memory location can he displayedby following
this procedure:

1. Set the INSTR/WORD switch to INSTR.
2. Set the AUTO/MANUAL switch to MANUAL,

3. Toggle the RESET A switch, thus leaving an LDA
instruction in the A register.

4. Load the memory location of the information de-
sired into bit positions 7 through 1% of the A
register.

5. Depress the A to I switch.
8. Depress the START switch.

The contents of the memory location specified in step
4 now appear in the A register.

Control Console Instruction

This instruction permits operator intervention. Itcan
be used in programs in which alternate pathsof oper-
ation are available. Job requirements may varydaily
for one type of run, necessitating that the operator
determine which path or leg of the program is to be

GHU)I

followed. For example, one program path may be for
card input and tape output, while the alternate path
provides for both tape and printer output.

RCS 2500011 Word Times: 2

Functional Description: READ CONTROL SWITCHES,
Each of the 20 console control switches forthe A rep-
ister is examined. If a switchisdown (ON}, a 1-bit is
placed in the corresponding position of A: otherwise,
the corresponding bit position of A willnotbe altered.

Example: Read the conirol switches and modify the A
register accordingly. Assume thatthe A register con-
tains a BRU 0000 instruction and the control switches
are set to 0001633,

GAP Coding:
Symbol Cpr Operand X
|lzi3]4]u|g NIEREL |al|sln]lui\e|n|lnl|a 30
A s RC.S|[| —— —

Register Contents in Octal

A
2600000

| 2601633 '

Comments: RCS is used to interrogate the control
switches during processing. In most applications, the
A register should be cleared to zero before RCS is
executed.

Before execution:

after execution:

During AUTOMATIC operations, the A register
gwitches on the console have no effect on the contents
of the A register, except during the time that the RCS
command is in the instruction register. At that time,
each of the 20 console switches is examined.

CONSOLE TYPEWRITER CPERATIONS

The console typewriter, Figure 34, is primarily an
output device, which is normally locatedon the control
console desk. It canbeusedtoprovide brief messages
to the operator during program processing, or it can
gerve as a more extensive output medium in lieu of a
hiph-speed printer.

The typewriter receives and types one character at a
time from the N register. The sixposition N register,
in turn, is loadedwith one character ata time from the

Gl

// /f l—\J

88

Figure 34, Console Typewriter

A register. The typewriter can print ten characters
per second under program control. Typewriter capa-
bilities include:

Red printout

Black printout

Print characters 0 through 9, A through Z, minus,
period, slash, dollar sign, and comma

Carriage return

Space

Tabulation

Error messages are normally programmed toprintin
red. Figure 6-4 illustrates typewriter charactersand
actions and the corresponding octal codes.

Messages produced through the console typewriter can
serve as a log of program performance. For this pur-
pose, the typewriter can be programmed to record
program identification, list magnetic tape labels, and
provide instructions to the GE-225 operator. Operator
comments can be inserted manually whenever the GE-
225 is in a halt status (AUTO or MANUAL).

Required carriage returns must always be specifiedin
the program. If returns are omitted, typing continues
to the right margin stop; the carriage then halts, but
typing continues, resulting in illegible messages.
Typeouts involving tabulation require manual inter-
vention. The operator must manually set requiredtab
stops before running the program.

The typewriter shares access to memory throughthe N
register with the paper tape reader and punch. Thus,
if the N register is engaged because of a type oper-
ation, paper tape read or punch operations must be
delayed until the N register is released. Also,

electrical power can be on for only one of these three

units at one time; if power is on for the paper tape
reader, for example, then power is off for the paper
tape punch and the typewriter. This permits an

economy in the assignmentof operation codes; the code
25000068 is used for type, read paper tape, and write
(punch) paper tape.

Typewriter Octal
Character Equivalent
or Action of BCD Codes

00
01
02
03
04
05
06
07
10
11
21
22
23
24
25
26
27
30
31
41
42
43
44
45
46
47
50
51
62
63
64
65
66
67
70
71
40

Space 60
/

I NN E<dH EOWOoZErR Y~ N HdRbQEir @®10 AR =0

13

33

$ 53
Carriage

Return 317

Print Red 72

Prird’: Black 75
Tab 76
Figure 35, Typewriter Character Set

Programmed use of the typewriter requires that the
typewriter power on switch (under the right front
corner of the typewriter) be turned on manually. In
addition, at least 200 milliseconds before the first
character is to be typed, a typewriter on instruction

GlE-22%

89

- teT

must be given; the unit will remain on until a subse-
quent instruction (such as QFF, RON, or PON} turns
off typewriter power.

Next, the N register must betestedfora ready status;
if ready, then a shift to move the character to be typed
into the N register may be given, followed by a TYP
coiimand. This sequence of test, shift, and type must
be repeated for each character to be typed.

An optional feature enables the typewriter to be used as
an input device, in addition to the described output
function. The input feature enables one BCD character,
as selected by a typewriter key, to be placed in the N
register. The character can then be shiftedinto the A
register for subsequent processing as desired.

The input feature is enabled by the operation code

25000165, which also serves as the halt paper tape
{HPT) instruction. Normally, HPT has meaning only

when the paper tape reader is on and is moving tape.
Because typewriter andpaper tape reader cannotoper-
ate concurrently, there is no disadvantage to dual use
of the 25000163 code.

To use the optional typewriter input feature, the type-
writer must be ON. Issuinga HPT instruction enables
the typewriter keyboard and causes the N register to
become not ready. Depressingatypewriter keyplaces
the corresponding BCD character into the N register
and returns the register to the ready state.

Typewriter Instructions

TYP 2500006 Word Times: 2

Functipnal Desecription: TYPE, Iftypewriterpoweris
on, one BCD (six-bit} charucter in the N register is
typed. The contents ol N are unchanged.

Example: Examples of all typewriterinstructionsare
provided in the coding sample foilowing the last
discussed typewriter instruction.

comments: Execution of a TYP instruction does not
affect the contents of any arithmetic register.

The TYP instruction is normally preceded by a shift
of data into the N register from the A register, as well
as by a test-and-branch {BNR or BNN}.

The N register becomes busy during the execution of
TYP and remains busy until typing of the character is
completed.

No typewriter keys are activated when an attempt is
made to type an illegal character (that is,a character
not included in the typewriter character set as shown
in Figure 35); in addition, the N register goes busy

and must be cleared by manually typing a character or
depressing the space bar.

Central processor operation is not delayed by the exe-
cution of a TYP. The next sequential instruction is
initiated inthe {ellowing wordtime, although typing may
not be completed for several milliseconds.

The TYP instruction is used to control typewriter
action other than typing. If the N register contains one
of the following codes, the indicated actions occur:

N Register
Contents (Octal) Action
60 Space
78 Tab
v Carriage Return
T2 Print Red
75 Print Black

TON 2500007 Word Times: 2

Functional Description: TYPEWRITERON, The type-
writer power is turned on (if the typewriter power on
switch is on} and power for the paper tape reader-
punch is turned off.

Example: Examples of all typewriter instructions are
provided in the coding sample following the last
discussed typewriter instruction.

Comments: ‘To aliow ihe lypewriter motor sufficient
time to attain operation speed ufter a TON, a delay of
at least 200 milliseconds should be programmed before
executing a TYP instruction. However, if the TON is
given within 1 millisecond after turning off the type-
writer (with a programmed OFF, RON, or PON), no
delay is required.

Unless the typewriter power is already ON, failure
to program a TON instruction hefore TYP will cause
the N register tc become and remain not ready,

OFF 2500005 Word Times: 2

Functional Description: POWER OFF. The power
supply for the typewriter and paper tape reader and
punch is turned off.

Example: Examples of all typewriter instructionsare
provided in the coding sample following the last dis-
cussed typewriter instruction.

ents: Afteran OFF is executed, subsequent TON,
RON, or PON instructlons will restore power onto the

blz- 225

90

respective units., If power is on for any one of the
units (typewriter, paper tape reader, or paper tape
punch), it is off for the other two.

BNN 2516005 Word Times: 2

Functional Desgcription: BRANCH ON N REGISTER
NOT READY. Ii the N registerisnot available for in-
put or output (that is, if a previous type, read paper
tape, or write paper tape instruction has not heen com-
pletely executed), the next sequential instruction is
executed. If the N register is ready. the second
sequential instruction is executed.

Example: Examples of all typewriter instructions are
provided in the coding sample following the last dis-
cussed typewriter instruction.

Comments: The BNN instruction (or its counterpart,
BNR} is used to insure that the N register is ready
{not in use) before initiating a read or a punch papsr
tape operation, as well as before type operations.

BNR 2514005 Word Times: 2

Functional Deseription: BRANCH ON N REGISTER
READY, If theN registerisavailable for input or out-
put (that is, if the last type, read paper tape, or write

paper tape instruction has been completely executed),
then the next sequential instruction is executed. 1I the
N register is not ready, the second sequential instruc-
tion is executed.

Example: Examples of all typewriterinstructionsare
provided in the coding sample following this instruction
description,

Comments: The BNR instruction(like its counterpart,
BNN) is used to insure that the N register is ready
before initiating a read or a punch paper tape oper-
ation, as well as before type operations.

Typewriter Sample Coding
-

Prepared output routines are available to assist the
programmer in preparing coding for typewriter print-
outs. These routines provide for single or multiple
word cutput, red or black ribbon, punctuation, tabu-
lation, and carriage returns.

To illustrate the use of the various instructions related
to typewriter operations, a simple example is shown
in Figure 36,

[Ra G AR E P RO G F A oare T
Symbeo! Opr Opacand - X REMARKS Sequence

1S EHEMENEN EX WL KXY SRR Sl KRN KLY K EL L G A
‘PR EPF TON o TYPEWRITER ON
t L.D.2Z _ .
: 5 T Al INITIALIZE X REGISTER 1
. ILLN.X|]L e 1
' B X L1 58 7 . 11| LooP FOR 200 MS .
. BRUP.R EP +.3,
’ LD Z . \
' 3 T A2 INITIALIZE X REGISTER 2 N
‘I TYPE LDATAY TYPEWRITER MESSAGE (3 CHARS) -
*® s.RD|l .2 SHIFT 2ND TWO CHARS. TO G
" BNN . .
* B RU|* - 1, e TEST N REGISTER .
v 5 A N6 e MOVE CHAR. TO BE TYPED TON
" T.Y P . I TYPE CHARACTER —
" s L.Dl6. . . . POSITION NEXT CHAR, IN & .
" I N XJt 2 | COUNT CHARS. TYPED _
v B.X. L3, , . LF LAST CHAR. . EXIT B
' B.RUTYPE +.2 LOOP TO TYPE NEXT CHAR
“lEXIT L.o.alRE T UBN. CONTAINS OCTAL 87
" B.N.N .
= B.R ul* . -.1, s TEST N REGISTER . .
= S.ANB., . .., .
" T.Y. P OCTAL 37 RETURNS CARRIAGE ,
i N Q.F F TURNS OFF TYPEWRITER POWER e
£l

Figure 36, Sample Typewriter Coding

P)

Peala

ol
|

RS

T

@ 4

As presented, the programassumes thata three-letter
word to be typed is in symbolic location TAX and that
an octal 37 (carriage return) is in location RETURN.
Further, it is assumed that the manual power on
switeh on the typewriter has been turned on.

Line 1 of the GAP Coding Sheet turns on the typewriter.
Lines 2 throuzh 6 contain coding that sets up X reg-
igster 1 to operate as a counter, then counts through
the INX, BXL, BRU loop 1587 times to insure that at
least 200 milliseconds (to allow the typewriter motor
to reach operating speed} pass before a TYP is initi-
ated,

Lines 7 and 8 prepuare X repister 2 to operate as a
character counter during the following TYP operation.

The 3-character message (in BCD) is loadedinto the A
register (line 9) and then shifted right, 2 characters,

into the @ register in order to positionthe first char-
acter to be typed.

Lines 11 and 12 test the N register for ready status.
If it is not ready, the program loops until it is. Line
13 shifts a2 character into the N register and it is typed
{line 14).

X register 2 is incremented to indicate that the first
character has been typed (line 16}, then tested to see
if typing is complete. If il is not, the program loops
back to line 11 and repeats the sequence until the
entire word (3 characters) Lias been typed.

Upon conmipletion of typing, « carriage return (octal 37)
is loaded into A (line 20}, the N register tested (line 20)
for ready, and (if ready) receives the return code,
Line 23, TYP, causes the carriage to return, and the
typewriter is turned off (line 24).

92

6. CONTROLLER SELECTOR OPERATIONS

Certain GE-225 high-speed input-output peripherals do
not access memory directly, butare buffered by means
of controllers which, in turn, are granted memaory
access through a control and data transfer device, the
controller selector. Figure 2 illustrates this rela-
tionship. The auxiliaryarithmetic unit {AAU), although
connected to the countrciler selector, has character-
istics that distinguish it from the high-speed peri-
pherals., While it is not an input/output unit, it is
discussed in a later section like other peripherals.

CONTROLLER SELECTOR PRIORITY

Because the controller selector serves as a means of
communicating between peripheral controllers and
memory, €ach controller must have a unique address
and a specified memory priority. Thisisaccomplished
with plug-in connectors which tie together the peri-
pheral controllers and the controller selector.

The controller selector assigns each of the eight avail-
able plugs aunique memory access priority. The lower
the plug number the higher isthe priority, as shown in
Figure 5 The relationship of priority to plug number
means that the memory access requirements of the
peripheral device must be taken into consideration
before it is assigned to a specificplug. The controller
selector has a data transfer rate of 55,000 20-bhit words
per second, which is more than sufficient fora typical
GE-225 installation, A GE-225 system may have any
combination of input-output controllers except for
. the following limitations: No more than 1 AAU, 2
41-Kec, magnetic tape controllers, 2 DSU controllers,
or a combination of 2 41-Kec, magnetic tape and D3U
controllers,

Devices with high memory access regquirements,
such as a disc storage unit (DSU), require high
priority plug numbers, Devices that can wait for
access to memory without loss of information are
assigned low priority, Plug assignments should be
determined during the early stages of system planning
and all programmers informed of the plug number

of each device, Recommended plug assignments
whenever possible are:

Plug Number Peripheral Controller
1] Disc Storage Unit
(DsU)

2nd DSU or Magnetic Tape

2 Magnetic Tape

3 Magnetic Tape or Document Handler
Adapter

4 Document Handler Adapter

5 Doc. Handler Adapter/DATANET-15

6 Printer

7 AAU

The adoption of these assignments increases compati-
bility of software and back-up between installations.

CONTROLLER SELECTOR
INSTRUCTIONS

Input-output operations of peripherals connected to the

controller selector are accomplished by a sequence of
ingtructions.

The controller selector should firstbe tested to deter-
mine if it is ina ready state before issuing an instruc-
tion to perform an operation. Attempted execution by
the computer of a SEL command (discussed below)
when the controller selector isbusy resultsinan alert
halt condition and hangsup the computer. Interrogation
of the controller selector is done by one or more BCS
instructions, which are discussed in the sections on
high-speed peripheral operations.

BE-925

(e

93

BCS XXX P 2514P2C,2516PCC Word Times: 2

Funetional Description: BRANCH ON CONTROLLER
SELECTOR. The peripheral connected to controller P
ig tested forihe condition (CC) indicated by 2 mnenionic
placed in the operand address field identified by XXX
above. The BCS instructions arce listed anddescribed
with the instruclions [or the various peripheral de-
vices,

If the controller selectur is ready, the plug containing
the peripheral controller that is to be placed in oper-
ation must be selected by 4 Select (SEL) instruction.

SEL P X 2500P20 Word Times: 2

Tunctional Descripiwn: SELECT, The peripheral con-
nected to contrulier 12 (nddresses 0 through 7) is sel-
ected for the operation indicated by an associated
instruction. The excentionof the SEL commandalwiys
sends the contents ot the et two memory locations to
the selected periphoral controbier. Execution of the
SEL instruction alqo jescrs condroller error condi-
lions.

Every peripheral counected to the controller selector
requires three menmory words containing instructions
to perform an operation: the SEL instruction selecting
the controlier and two other words instructing the con-
troller to perforu a specific task. The instructions
contained in the two words following the SEL command
are not executed by the central processor. Therefore
when the SEL is in the I register, the P register will
hold the address of the third sequential instruction.

Example of SEL Coding:

Opr Operand X REMARKS
[HIENEL liIu]lutulle[nl"lu 1)
E L6 M

EL j
SELECT PLUG Nﬂwﬂ_ﬁ_g

The contents of the two words following the SEL in-
struction is governed by the operation desired and by
the peripheral equipment to be used. Specific details
for programming these peripheral operations are given
in subsequent sections.

L

AUTOMATIC PROGRAM INTERRUPT
(AP

A GE-225 optional feature makes it possible to pro-
gram zn automatic interruption of the mainprogram to
process a higher priorityprogram. This feature, when
used with the Automatic Priority Interrupt Executive

Routine, controls the simuitanecus operation of two
or more unrelated programs. The system combines
peripheral-to-peripheral runs (e.g., tape-to-printer,
tape-te-punch, and card-to-tape} with a mainprogram
and can control programs associated with the remote
inquiry stations.

The API feature provides lor automatic interrupt of
the main program whenever selected peripheral con-
trollers change status from ‘not ready’ to ‘ready’.
This allows control to be transferred automatically
from the main program to the executive routine de-
signed to service the peripherals. Each controller
on the GE-225, the card reader, and the card punch,
can signal the GE-225 thatit has finished an operation,
and is ready for ancther operation. This signal may,
or may not, cauge a physical interrupt onthe GE-225,
depending upon the status of the computer. The type-
writer und paper tape reader orv punch cannot cause
automatic program interrupt.

A switch is provided for each peripheral controller
which allows only desired peripherals to cansean API
thereby, in offect, masking out devices for which an
interrupt is not desired.

When the switeh is ‘ON’, the peripheral controller will
be allowed to cause an automatic interrupt (under de-
signated interrupt conditions).

When the API switchis ‘OFF’, the peripheral controller
will not be allowed to cause automatic interrupt (under
any conditions).

When a GE-225 system operates with API, the computer
may be in a specific mode of operation within the pro-
gram being executed. These operating modesandpro-
gram are defined as:

Non-Interrupt A mode of operation in which the
Mode GE-~225 is not processing a priority
program; and can not be physically

interrupted by a signal from a

peripheral device. When power 18

initially applied to the GE-225, the

GE-225 is inthe Non-Interrupt Mode,

Interrupt Mode A mode of operation in which the
GE-225 is not processing a priority
program; but can be physically in-
terrupted as aresultofa signhal from
a peripheral device. A set mode is
required to place the GE-225 in the
Interrupt Mode.

Priority Mode A mode of operation in which the

GE-225 isprocessing a priority pro-

gram, as a resultofbeing phvsically

Interrupted while operating on a

main program in Interrupt Mode.

Definitions

Main Program - The program thatisbeing executed at
all times other than when an Automatic Program
Interrupt occurs.

Priority Program - A program (peripheral-to-periph-
eral) that is designed to be executed in the Inter-
rupt Mode.

Remote Inquiry Program - A program that controls the
Remote Inquiry hardware and is executed in the
Interrupt Mode.

Program Interrupt Instructions

SET PST 2506015 Word Times: 2

Funcliopal Description: SET AUTOMATIC PROGRAM
INTERRUPT ON is required to cause the program
interrupt feature to be effective. This instruction
causes the computer to enter and remain inthe inter-
rupt mode until the priority program is completed and
directions are given for return to the main program.
This comnmand must be given belore the mainprogram
can be interrupted, If a programmer doesnot wish to
use the interrupt feature, he merely avoids executing
a S5ET PST.

SET PBK 2506016 Word Times: 2

Fungtional Description; SET AUTOMATIC INTER-
RUPT OFF is required to disuble the program interrupt
hardware. This instruction causes the computer to
leave the interrupt mode and remain in the normal
mode until the mode is reset by a SET PST instruc-
tion.

Ta prevent the main routine from being interrupted
after a SET PST has beenexecuted, a SET PBK must be
executed.

Because the program interrupt feature becomes effec-
tive whenever the command SET PST (Priority Set)
is executedand becomes ineflfective when the command,
SET PBK (Priority Break) is executed, any attempted
interrupt {caused by u change in status of one of the
seiecied controllers) which occurs during the time
when Automatic Interrupt is not set will be remem-
bered and will cause an automatic interrupt immedi-
ately following the next SET PST, Itthen becomes the
responsibliity of the Executive Routine to determine
which of the selected peripheral controllers changed
status and must be serviced.

Operation of API

When automatic interrupt is initiated, the following
events occur:

1. Interrupt of the main program is delayeduntil the
next instruction access time. {The P counter con-
tains the address of the next instruction.)

2. The computer automatically selects index group
32. NOTE: Index group 32 is available only on
GE-225 systems with the API feature and can
be used only as prescribed for APL

3. The contents of the P counter are stored in word
one of the API index group 32 (memory location
0129).

4. Control is transferred to address 0132 {the {first
word following index group 32) which is the start
of the Executive Routine andanautomatic priority
break occurs.

5. During the time that control remains with group
32, the SPB command (if used) will referto group
32 only.

The ouly index groun availuble during the Exerutive
Routine is group 32. It must be remembered that the
address of the unext instruction to he accessed in the
main program has been stored in word 1 of this group
and the contents must not be destroyed. The com-
puter cannot be interrupted again until SET PST com-
mand has been executed as described below,

To return to the main program, the following pro-
cedure is required:

1. A SET PST command is reguired in all cases
regardless of whether or not it is desiredto con-
tinue under control of the program interrupt
feature, If the programmer wishes to return to
the main program with program interrupt dis-
abled, the SET PST must be followed by a SET
PBK,

2. An indexed unconditional branch {BRU) to location
zero, modified by word one of index group 32,
sets the P counter to the address of the next main
program instruction to be accessed. This is
always the final step in the sequence for returning
to the main program.

3. Any peripheral controller that changed from not
ready to ready status while the computer was
under control of the Executive Routine will cause
an interrupt after return to the main program.

It is permissible to execute any number of instructions
between the SET PST and the indexed BRU which is
used to transfer control back to the main program.

95

Also, any number of BRU instructions canbe executed
while in the interiupt mode,

When API is set in the program, the following oceurs
when a controller yoes from not ready to ready status:

1. P counter + 1 is stored in location 012910,
2. Control iz trunsforred to locartion 013210.

3. At this time,..ny orall contreollers may or may not
be tested and may or may not be ‘put to work’, It
is not necessary. however, to Jdo auy testingor to
issue uny commands to return to the main pro-
gram.

4. The computer-generated-and-executed SPB 1324
word 1, is the instruction which turns the API flip-
flop off in the central processor. This generated
instruction, in effect, also execuies a SET PBK
instruection. Any controller becoming ready while
the program is interrupted will be remembered
until the priority is SET and the modified branch
is executed, at which time the API flip-flop will be
set again if any controller went ready during the
time the ‘pseudo’ SET PBK instruction was exe-
cuted by the computer.

Once a controller causes aninterrupt, itwill not cause
another automatic interrupt until it goes from the not
ready to ready status again.

AP|] Executive Routine

The API executive routine (CD225J4.000) 18 in memory
with every main program or remote inquiryprogram.
Programs with precedence or remote inquiry pro-
grams may be in memory, if desired. The API exe-
cutive routine:

1. Performs functions necessary for starting and
ending all programs being executed under its con-
trol.

2. Saves the A and Q registersand the overflow indi-
cation when a main program is interrupted
because of a peripheral going from busy to not
busy.

3. Determines which peripherais are in ready state
and executes the appropriate priority programs.

4, Restores the A and Q registers and the overflow
condition betore returning control to the mainpro-
gram.

Three basic combinations vt programs are designed to
share memory and peripherals with the APl executive
at execution time. These are:

1. A main program and {rom one to four priority pro-
Eriuns.,

2. A main pregram and 2 remote inquiry program.

3. A main program, from nne to three priority pro-
grams, and a remote inquiry program.

The Automutic Program Interrupt Executive has as
its basie confipuration the GE-225 with ad4K or larger
memory. Any configurationof peripherals may be used
in conjunction with this, excluding the document handler
and paper tape reader-punch, The system must include
the API feature.

The routine requires 97 memory locations and, when
added to the front of a user’s program, is assembled
into the following areas:

1. 012310 014110 = 14 locations
2. 014310 016910 = 27 lucations
3. 0592y, 0606;y = 55 locations
4. 060610 063910 = 34 locations

for future expansicn

With the exception of programs for magnetic tape and
DSU controllers, programs must not refer to
peripherals used by auother program in the same
load. When magnetic tape and DSU controllers are
both used, the same handler on the DSU must not he
addressed.

Programs must not refer to memory areas used by
another program, except in the use of common subrou-
tines.

Card read-in areas are restricted to locationsﬂzﬁﬁw

and 0384y 4, for programs being executed under the con-
trol of API Executive.

Card punch areas are restricted to locations 051210
and 06404, for programs using API Executive.
All symbols used in the executive routine start with
#APIL,

Locations 0142, and 014410 are reserved for remote
inquiry and must contain zeros if remote inquiry is
not used.

Restart is provided only for the main program.

All programs being executed simultaneously should
used the same tape or DSU input /output routine.

96

It is permissible touse two different magnetic tape 1/0
routines only if they refer to different tape controllers
or if the read/writers are not buffered and a delay,
error check, and correct is done after each.

Hardware Operation

Each controller, the card reader, and the card punch
can generate a signal to the central processor that it
has finished an input/output operation, andis ready for
another command. Whether or not this signal is
actually sent to the central processor depends upon the
setting of the API switch associated with each device,
The controller switches are locatedonthe inside of the
controller, usually pear the controller selector plug.
The card reader and card punch switches are located
inside the top door on the front of the control console.
With this switch off, the interrupt signal from the device
is not sent to the central processor. The switch must
be on for the central processor to receive the signal
from the 1,0 device.

The action of the central processor when it receives
an interrupt signal depends upon the mode of operation.
Non-Interrupt Mode is established by aSET PBK com-
mand, or by reseiting the computer through depression
of the power on button. Inthe Non-Interrupt Mode, the
signal merely sets ua latch to remember that it re-
ceived the signalforlateruse at suchtime as Interrupt
Mode is set. Interrupt Mode is established by a SET
PST command.

When a physical interrupt occurs, the central pro-
cessor enters the Priority Mode of operation, The
location of the next command to be executed in the
main program (note the difference from normal SPB
operation) is stored in word 1 of API index group 32
{location 201 octal). Index group 32 is set automati-
cally; and program control is transferred to octal
location 204. A SET PBK operation is executed auto-
matically as a result of the interrupt, resetting the
latch associated with the [/0 devices, and dropping the
Automatic Interrupt Mode. Further signals from I/0O
devices becoming ready during Priority Mode set the
1,0 lateh again so that another interrupt may oceur
when the priority program is finished and Interrupt
Mode 18 re-established.

When the priority program has completed its oper-
ations, control is returned to the main program by
issuing a SET PST, followedby a BRU O, index word 1.
{Any modified BRU following the SET PST will cause
exit from Priority Mode. Modified BRU instructions
prior to issuing the SET PST have noeffect, and oper-
ate normally in group 32 in Priority Mode.) Issuance
of the SET PST followedbya BRU 0, word 1, will cause
a return to the main program and the previous index
group that the main program was operating in when the
interrupt occurred. Upon return to the mainprogram,

the computer is in the Interrupt Mode. If it is desired
to return to a main program from a priecrity program
in Non-Interrupt Mode, a SET PBK should be executed
between the SET PST and the BRU 0, word 1.

Interrupts can occur only at the point that an instruc-
tlon has been executed completely and another instruc-
tlon is about tobe accessed. Aftera test such as BZE,
an interrupt will not occur until the computer has
analyzed which route it shouldtake, Interrupts can not
occur between a BRU and the locationto which it goes.
Hence, a program loop such as BRU * cannot be inter-
rupted.

Programming Considerations

Each main program to be used in conjunction with the
API and a priority program should he carefully scruti-
nized to ascertain what damage if any, could resuit
from an interrupt at any given point. For instance,
an interrupt between a RCD and an HCR might result
in continuous reading of cards. (Ap HCR instruction at
the beginning of the priority program will prevent
this.) An interrupt in the middle of a type routine
might result in the loss of the N register contents
and a meaningless message. An interrupt justafter a
test-and-branch, suchas BZE, has been executed might
prove disastrous if the priority program should re-
verse the condition just after the test is made. Each
of the above conditions might necessitate a SET PBK
and a SET PST around the routine to prohibit interrupt
during the crucial operation. Care should be exer-
cised not to abuse the ability to prohibit interrupts in
this manner, however, or the effectiveness of APIwill
be unnecessarily reduced.

Sample APR|I Problem

Assume that it is desirable to operate two programs
concurrently within GE-225 memory., Oneprogramis
a card-to-tape conversion, the other represents an
independent processing function. This problem canbe
solved efficiently by use of the program interrupt
feature, without use of the API Executive Routine.

Card-to-Tape Conversion - This should be the priority
routine since it involves few program steps, re-
quires continuous use of peripherals, and exe-
cution depends upon the card reader and the tape-
controller being in a ready status.

Independent Processing Function - This should be the
main program hecause it requires manyprogram
steps and is much less reliant uponperipheral use
and readiness for processing.

97

Symbol Opr Operand } 4 REMARKS
1 [=] 2]« o] elr]e o2 2] 2 =] 5] 7] ®]°[25] 30 H
Al . D EC|H 1 2 First card read-in area
. L IDEC|6 40 Second card read-in area
A 2 D.ECi{5.1.2. . First card read-ip area
. . . D ECi&6, 4.0, . . . | Second card read-in area
CONS.TI1DECI|]1 4 2. . . Transfer location
CONST2ID D CI0O, . . Storage area for coptents of the A apd @ registers
B.CN . . \ Test for card reader not ready
B R UJA S L Exit if card reader is not ready
Ay RCD|O .5 1.2 ., |, Read card into memory beginning at 0512
: HCR| | e Halt card reader
. DS TICONS T, 2, , Store contents of A and @ registers for main
. L 1 program
DL DIA L, . L Load read-in area constants
XAaQl Switch read-in areas
D8 T|A L, , Store read-in areas as constants
s T OlA 2 . ' Set up alternate card read-in area
A 4) B R UIA T T Bypass writing a tape record the first time
. L through
. B.CSI|B. T N, . . 2 |Test for tape controller not ready
. . IBRU[* - 1, ,) Delay until tape controller is ready
. s E . L2, , . |) Select controller selector address two
A, b w T.D|IG S 1 2, \ 1 |[Write tape in decimal mode from memory
: . R R locations beginning at 0512 onto tape 1
. . 2.1) Write a maximum of 27 words
" D L DA 2 Load read-in area constants
X AQ| | . Switch read-in area constants
, DS T|A 2) . . Store read-in area constants
5 T OlA S o et up memory address from which tape record is
. R A L to be written
A o3 D LD|ICONS T 2 Load contents of the A and @ registers from main
I X . . program
X S E. TP ST Set priority interrupt mode on
B R UG, . . 1 |Branch to zero as modified by word one of index
. \ graup 32: i.e., to the setting of the P counter
L) L) when the main program was interrupted
Al LDAICONS T 1 . Load binary equivalent of 142
S.T.OlA 4 . - Will cause the writing of tape records all succeed- {
A Lo ing times through the program
B R UlA 6 NP Transfer to exit
Figure 37. Assembly Program Coding for API Problem

The programmer should realize that use of the API
executive routine extends the usefulness of the API

T
4 Gy
P

feature and reduces the housekeeping functions and

checks necessary for efficient use.

BIe= 995

.

(=i

58

7. PROGRAMMING CONVENTIONS

The efficiency of any computer installation depends
to a great extent upon proper organization of pro-
gramming procedures and techniques, This section
contains suggestions and lists items that should be
congidered in establishing installation procedures.

MEMORY LAYOUTS

Many installations have (as standard procedure) allo-
cation of memory areas which all programmers must
observe. A few advantages of such a system are:

1. Standardization of input and output, sub-
routine, constant, and main program areas.

2, Programmer familiarization with the oper-
ating program is increased.

3. Changes and modifications are more easily
and correctly made,

4. Debugging is accomplished more readily.

Because operating conditions and requirements vary
from installation to installation, the memory layout
used may be unique and suitable only for that parti-

cular installation. A typical layout is shownin Figure
38,

INPUT/OUTPUT DOCUMENTATION

Proper documentation and layout of input and output
data is the responsibility of the programmer; in
addition, good documentation is a valuable tool for the
programmer, because it enables the programmer to
modify or change data with a minimum of effort,
debugging is made easier and program operation is
possible in leas time. Typical forms available are
shown in Figures 39 through 43,

(ECI D@G\IE
(GG

Decimal

GO00
to
Q003
0G04
to
o127
128
to
0168
0170
to
0255
0256
o
o283
0284
to
0383
0384
[11]
G101
0402
o
0511
0512
to
0530
0540
0635
0640
0719
0720
o]
0839
Q840
0o
1699

2000

H]

Location

Dedcription
Index Registers

Opticnal
Index Regiaters

Reserved for
Automatic
Program Interrupt

Miscellanecus
Constants or
Working Storage

Card Read-In
Area

Miscellaneous
Constants or
Working Storage

Card Read-In
Area

Miszellaneous
Constants or
Working Storage

Card
Punch
Area

Reserved for
Automatic
Program [nterrupt

Printout and
Format Areas

Magnetic Tape
Input and
Output Areas

Subroutines

Maln
Program

Figure 38, Typical Memory Allocation

SIS / é

99

Ll 220
MAGNETIC TAPE RECORD LAYOUT

ol

K -

PROGRAMMER

_ DATE

HaN

180

Fil

W

(S0

PaGE

SPEC BIN

|m1_1|||||||1_1_r1f: N Ty A
IS T A A N I O R _1#||,;|||[,r ||||||||||
z _ __ |||||||
o rrrrrrrirrr I R
[I T (A A A A A O AN AN A S A TTI.' |||||||||||
|M ||||||||| _| ||||||||||||||||||||
o~ | I
A I N e N N A U UV SN U DU A N A A AN AN O N A S
= “ I
A ol o o = e e N e i
mu||_ﬁ|f |||||||||||||||| CrTIrrrrT
=.rrororrr crrrerrrrrrrr Crrrrrrrr
! _ _m |
l_r1|_|_l_|I__|T_T IIIIIIIIIIIIIII L
= oo
ELEEE RERRARRRERERERERRNAREREE]
S I N N A o
[5 A s s A A A B
_ B _ |||||||||||| TTII
LT ITrrrres B
“m H._IE..J,._._.JH?HQ01234567890]2345073
L2 1 |

Figure 39, Magnetic Tape Record Layout

Ble- 229

100

199Ys oA prooay adel onjeulel ‘0 sIndrg

L]
1
"—1

% P 13 3] W H iy RJI
T T
5 [1 4]
TR R RS RN RN
&} B %]
[R R A N A I B
2 21 &8 %
o
15 i3 o a*
1 [NS SR IR TN A NS N Y I
¥ L st w tr 43 I* oF
Lo R I T U I R I R TR I D I
&K € it x SE ¥ 13 2t

L e b e

al tl £ ol

S EN N S (O Y IV I N W Iy

Y NV S S S0 M M M M N S A)

5 t E Z

e 2ovd LIAHS LNOAVT QHOOTH AdV.L DLLANIVH

‘AdAL QHOIN

HIWWVEOON wiriag oo 1
217 91929313 E TVRINIS N

(_.
\

£-223

o
0y

101

399ug noder] pre)d sydnmW god " Ip 2an31d

T T T T T T T T T T LI T T T T 7 T T T T T T T T T T
| &% | ¥ | % | ® | 1z | 0 | 6L | & g &T | s | ST | ¥ | BV L ¥ | O | @} & | ¥ @1 &t 3 ® }p 5 | ¥ | § | T [T 1 0 zm.mﬂhz
: | ' ! | ! ! : 1 | | | | 1] | | | | 1 1 1 1 | | | 1
1 1 1 : ; 1 1 1 1 | | | | i 1 1 1 ! | | | 1 | !
“2 & ﬁ.n: WL SLID 1L E.“mu RS L850 50 'u__mu) _u__aw a5 wm._% 95 2"3 % mm“ 505 4 __E 2.2_“2. :. 2.“2_ * o..Tm [2__2 [—nﬂnn [_n“.nn] 2_.__% [nnﬂ: E] nn_._ﬁn ® 2___: it E_:: [2__2 n 2“ 69 “ §s —.H R
| | | | | 1 ' I I | | | | 1 | | b I | | | | L | ¢
i 1 I | ! 1 ! | ! 1 1 I | i I | I | | | | | [| 1
1 i | | | | I | ! | 1 1 | | | | | | 1 | | | | | i
! | | | |] | i 1 | | | 1 | | | | | | | | | | 1
1 1 1 I 1 I I i | i 1 1 b | | | | 1 | | i I | t
1 1 1 1 1 1 1 1 1 1 i 1 i 1 | | | | 1 | | i 1 1 I :
! I : ! I ! ! i I ! ! i i i I | I I ' | | | | | ! !
02 6L SC BL ELIZL 1L 0159 BB LY[90 G5 ¥ &9 39 1303 55 951 L8 95 SOJ¥5 €F 25115 0% A§|a¥ Lk SkISk ¥ THZh [k OM{SE ¢f LC|9E S bEIZE 2 TEI0T 6F GZ(LE 33 STIMS CEITNZ O 6LIGL LA GISTRIENTT [TOT] 4 S L | WS k1 2T
1 1 1 1 1 1 1 1 |] 1 1 1 1 1 1 1 1 | 1 i 1 1 i
[[| | | | | | | | | 1 | | 1 | | | | | I | i 3
! 1 1 ! | | | 1 | | | 1 | 1 i | 1) 1 1 1 | 1 L
| 1 1 1 i | | 1 1 | | 1] | | 1 i 1 r 1 i ' | i 1
| t 1 1 ! 1 1 1 | 1 1 1 I 1 | 1 | | 1 | 1 t | 1 1
1 1 : 1 1 1 1 1 i 1 1 ! | 1 1 1 1] | |] 1 1 1
| | ' | 1 r 1 1 | | 1 | | b | | 1 1 | | 1 i | | 1 | H
| | i | [l ' ' | | | | | | | S N N R W RS P R | | 1 | !
_|3 6L 0|80 bLTE O UL be THEY 69,59 99 €9 09 88 V05 6% 95,05 U5 §%)YE 3 %) 19 06 6F|§h LP BNGF ¥F O 2k IF 0% GF 65 LEBF 5 FE\EE LG [ROE 43 BE\LT 0 SEqR 63 31 0Z LRI LI OSUYIENRL (T8 €6 &) 95 k| EE I \
1 1 1 1 1 1 | | 1 1 1 1 i 1 1 1 1 1 1 1 ' 1 :
| | | . | | i | i ' | i ! 1 1 I | | 1] | I
1 1 1 1 i 1 1 | 1 i 1 i 1 1 1 | i | | 1] 1
! 1 : . 1 | 1 1 1 1 | | | | I | 1 | | | | | i 1
1 1 1 1 | 1 1 1 | ! | 1 1 1 1 1 1 1 1 | 1 [1
1 1 i 1 1 1 1 1 1 t 1 1 t 1 1 1 1 | 1 ' 1 1
1 | f 1 1 1 1 | i) | ! f 1 i | 1 | |]] |
t + t + + + + + o . =+ + t 1 } + + +
SuveteteolBe s _.e_ EIEnEED G_om A 85,L5 06 55 ¥5 T3 29,15 05 6P BF L8 9K 5 Y¥ O b [F OF 65 5 L2 BE S KL OURE (R00 67 0217 07 ST b2 BT TE IR 0L SLAN LIANSISIENTIINOE 68 Ly 9k T2
! 1 1 ! 1 1 1 1 | t 1 1 1 1 1 t 1 1 1 1] 1 1
1 1 1 1 1 1 1 1 1 1 1 1 | i 1 1 1 1 ' 1 1
: 1 1 H 1 ! 1 i 1 1 1 1 1 1 1 1 1] 1 i 1 1 H 1 1
: . 1 1 ! 1 ! 1 1 1 1 1 1 1 i 1 1 \ 1 i 1 | 1 1 1
1 1 H 1 ' 1 ' 1 i 1 | 1 | 1 ! | 1 1 1 | | | 1 | |
1 1 1 1 1 1 1 1 1 1 | i t 1 i L | i 1 !] | 1
. i 1 1 1 i 1 1 1 1 | | | | 1 1 1 t 1 | 1 1 t 1 1
T 6z _233_83 3_2 3 :._3 ¥ S.__._.m s m«_E t 2"533"2 i an_m. " nlu_u- ﬂﬂ.ﬂﬂvﬂ: -nwu I _«"2 6 mn__a] :__:snn_:ﬁﬂ__e I 2_: v :__u_ It _:__ 54t _ 5 -__ £t
1 1 1 1 1 i 1 1 1 i | | ! r | 1 ' | i | | 1 L |
: ! 1 i 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1 1 | 1 I 1
i . ! ! | 1 : 1 1 ! 1 1 | 1 1 i 1 1 1 | | ! 1 1
! ! ! . 1 ! 1 1 1 1 1 I 1 1 b 1 i i | | 3 1 [
! ! . 1 . 1 1 | | t | 1] | | I | 1 | | | i i 5
. ! 1 1 ! . 1 1 1 1 | 1 T 1 1 ' 1 1 1 | i 1] 1
1 1 i ! 1 | : | | 1 | 1 1 1 | 1 1 1 | | 1 | ' '
UM BL L. 9L5L BL KL, EL UL BL|A 99 L3195 GF PR, 29 19909 65 §5|.L5 9% S5/¥5 6 25|09 0F 66 IRK Lk 9k(g¥ ¥¥ [YIZF Tv O¥[BE BE LERE St POICE $€ ICIOC 67 BTILZ 9F SZHFE CZ ZZING O AL1A L) SUlsT MIEZTTTRIIE b [RS F4 6T 1
_ ! 1 | 1 : . 1 1 1 | | | | 1 1 | | | | | ! | | !
1 . 1 1 : 1 1 1 1 | 1 | | | | | | k | 1 | 1 1
_ | : | | | | | ! I I ' I I I I I : : I ' I b)
. 1 1 1 1 i 1 1 1 1 1 | | | [| 1) |] | ! L
_ i ! I 1 1 1 : 1 1 1 1 1 | | b 1 | i | 1 1 1 '
| ! | 1 ; 1 1 | | ! | | | | | 1 I | i 1] |
1 i 1 1 1 1 | 1 1 1 1 1 1 t | i] 1 1 1 1 1
N T N T T T N S TR TR S NN SO ANV RN SN I S S BRUU !
WALEAE
- - - N1M

T HIWM SO

¥LY¥U TYWIDAD 43000 AYYME
SNOAVT THVD FIILLTR

BE- 229

102

}29Yg 04T UONEIOIY A1oWwaW ‘ZF dIndrg

- ; . .I.I. .-._ir. T
. I
o _ - - . - =
L — " ; — ; N — -
i “ _ _ L 1
—— T ! i %
N - ; | . |]
— t ; ' <
T T 3 i f ¥
r“. _ : | -] 14 .r._” _] | £
b] F4
T ! - T T T T T T
J— , . 4= - .
: .] n | o
_l : H [! -]
- e - — . PO S [_
f i : : I 4
L - e = _ . .
; - — Ll - L e — =
S I . _ R ,
e : = T ' i [H
[S, L — o — e — .\
T : . F i 1 ! ¥
—=n -t - T —-— e m e b —— - + T
N R] - I N t
: : I I i z
. “ e .] — _ L]
U S S SO R IO :
; I L) 3
_ U T RN [Jr..il-L . e e — — |.I.¢.||_|. -]
— A _- - _ ' ! i
" F-— T | 8 P
— H o H - o - _ a
I T - T - T
' 1 P ¥
T ! £
7 A - e R ! 2
[; i i
1 i - 1 f ! £
T f —= __ i 4
. ; | i
: : u | B E]
i — |
i ' | ' e ! | -
_ —_ ; R _ |)
| i ! H T I T
- ; " : 5
| _ ! . | I
| . | : ' [
; - - - = {-- - + + -
X ! i . 1 L , , b
I i
| - _ | ; | R ﬂ
! ! | - ; n
m [I EEEIELIEE R el -1 1003 WOV 300 AT EE G w___ 2l -®| L -2 - cr TOY , NOLLY 00 HA M
__l Ll [EL s 2q0T ol H ULkl LIE] (Y.l SHOMAN e Lol e s A0 SROILEECGd IIY "_ IR _ AMOMAN {THOA
At Qe T ENRYN) HATSIN T HHOH WM

w1

LELAD - - AN

1ITRS LAOAYT ~OUIFI0TTY LHOREM

103

uI0d JNoAe par) UWN[oD-08

*gb aIndtd

BE-225

- 104

USE OF SYMBOLS

The use of symbolic memory addresses rather than
absolute addresses is of utmost importance to the
programnier because it relieves him of having to keep
track of the location of each constant or instruction
in memory. By shifting the burden of memory location
to the assembly program, the programmer can code
with less errors and thus produce an operating pro-

for general applicability and mustbe self-specializing
to the particular problem at hand.

The calling sequence which supplies the information
(parameters and linkage) needed by the subroutine can
vary in size and form. An example of a simple sub-
routine ig illustrated in Figure 45.

gram more quickly. In addition, the symbol used can Symbol Opr Operand X
convey information as to the action taking place within 1f2faf afsfele e ivafra]aa] T neToe 7 e ha 20
the program. Figure 44 illustrates typical symhols. , DL DIN UM
DADNUM2
3. PBIMPYTEN 1
Symbol Qpr Operand X) DS T R,E‘S ;U L.T.
lLa_ls]4]a|a NEREE |z[|s|u]u]|oln|u|u 20 w
T. WO . . ECl2. . . N {5 . .
T E N . D.E.Cl1.0 — . Y o
Ic A RDTINIB S S5{2.7 L M P YTEN|S LD|1, L
S . TOR E, p.p.clo, ., P . 5 TA|ITE M P
C DEQF |\ALFIZZZ — S L DI2
n —————) DADTEMP
. e BRU|I, . M b
Figure 44, Typical Symbolic Addresses T E M P D D.clg. o
. I L i L L | 1
SUBROUTINE USAGE
Figure 45. Representative Subroutine

The use of subroutines can result in saving of both
programming and machine running time. Subroutines
can control all input and output operations and many
internal operations of aprogram and use less memory.
Normally, a subroutine is a series of instructions
which perform a repetitive function for the main pro-
gram.

The use of subroutines enables the programmer to
employ the ‘building block principle’ in the con-
struction of the program. All frequently-used data
processing functions at an installation canbe prepared
in subroutine form. It is then only necessary for the
programmer to use these routines to construct a
major portion of the main program with less effort
and time than would otherwise be necessary,

The ability to jump to a subroutine and return to the
maln program requires the retention of information
for the return. This concept of informing the sub-
routine how to get back is termed ‘linkage’. In the
GE-225, the SPB command provides the ‘link’ for
returning control to the main program after the sub-
routine function ig performed.

In addition to linkage, it is also necessary to specify
the parameters which define the problem to the sub-
routine. Subroutines are usually written in a form

This type of subroutine requires no parameters or
elaborate calling sequence. The data needed is con-
tained in the A and Q registers before entry and the
results from the routine are in the A and Q registers
upon exit.

A subroutine requiring a set of parameters in the

calling sequence is shown in Figure 46, =
Opr Cperand X
AENEE tleled]lu|le|H|lalla 20 [N
PISPBISTR I P |1
z|D EC[1238 . .
3D ECl1. ,
s[DEC[3,]
* B RU[ERROR, , [
*|8 TAIAMT #1. . |
A e k

Figure 46, Subroutine Requiring a Calling
Sequence

NGy
BlE= 228

105

BCD CARD READ SUBROUTINE
CALLING SEQUENCE

A SPB

A+1 DEC
A+2 DEC
A+3 ALF
A+l EOF

CRDIN 1

CARD INPUT AREA
WORKING STORAGE
PROGRAM EOF
RETURN

00620 ORG OWOO
REM
REM
REM
REM
REM
REM
REM
REM
00620 Q020001 *CRDIN LDA 1
Q0621 27006136 STO *RD#1
00622 2700663 STO *ROH2
00623 2700650 STO *EQF
00624 2700656 5TO *MOVE
00625 0100644 ADD *SYCON
00626 0300644 STA *SYCON
00627 0020002 LOA& 2
00630 0300657 STA *5TORE
00631 0ooo7o7 LDA *ENCON
Figure 47,

Since the parameters necessary for a subroutine can
vary over a wide range, the exits from a routine can
vary, depending upon the condition encouvntered within
the routine. In the example above, an error in the
routine results in the return to line 5 on the coding
sheet. In programming, this can be accomplished
within the routine by an instruction consisting of

BRU 4 1
A subroutine calling sequence and the use of the
parameters within the sequence isillustratedin Figure
47, -

The exits from the routine are handledinthis manner.

GAP Coding:

Opr Operand X
NEREE v2] 32l 1415 4517 [1s 18720] 7]

\

\
. \

| | _L B EQF Return /

Normal Returi/

In summary, the use of subroutines makes possible
congiderable saving of memory space and program-
ming time at the very slight expense of the space and
complexity of linkages and calling sequences.

A+5 NORMAL RETURN

CARD INPUT AREA

RCD #1

RCD #2

EQF LOCATION

MOVE LOCATION

SYNC CONSTANT LOCATION

WORKING STORAGE AREA
ENTRY CONSTANT

Subroutine Calling Sequence

TYPEWRITER UTILIZATION

The GE-225 console typewriter can be used by the
programmer to type messages concerning conditions
within a program and alsc to instruct the computer
operator as to program needs. Using the typewriter
for operation control can help reduce human errors.

Typical messages on program conditions are:
1. O ERRORS

G ERRORS
EMD OF PASS O

TAPE 3
TAPE b

2. END OF JCB

3. EGF P 1 T 2002 - 0OON PREMATURE START
02 -~ 004 PREMATURE START
003 - 010 PREMATURE START

Typewriter messages concerning the operator will be
similar to these:

1. JOD DONE, TAPE 7 1S NEW MOHITOR TAPE, SAVE 6 AND 7

TAPE T XONT READ

2. REMOV TAPE 2
MOUNT TAPE 5
TOGGLE SWITCH 18

GE-229

Since the typewriter is a relatively slowoutput device,
messages and operator instructions should be asbrief
as possible,

DEBUGGING TECHNIQUES

Debugging can be extremely expensive and wasteful of
time unless done properly. A few simple and basic
rules can dec much to reduce the expense involved in
getting an operational program, Because debugging
methods vary with the individual and the situation,
the following is offered merely as a guide.

Desk Checking

When the symbolic program is returned from key
punching, a listing is usually sent with the card deck.
Check this listing for discrepancies due to misinter-
pretation by the key punch operator and any passible
key punch machine errors. In scanning the symbolic
program listing, watch for mistakes in the operation
codes and for punches in card columns 7 and 11.
During GAP assembly any card containing punches in
columns 7 and 11 willbe rejected. Correct any errors
found before proceeding to the GAP assembly.

Correcting Errors Detected By Gap

After the symbolic program has been assembled by
GAP and returned, correct the errors detected and
listed by the General Assembly Program. If there
were numerous errors listed, make the corrections
to the symbolic program deck and reassemble., If
relatively few errors were detected, make these cor-
rections in the symbolic program deck without re-
assembling but by punching octal correction cards to
place with the GAP binary program deck.

Flow Chart Utilization

A flow chart is a valuable debugging aidin that it pro-
videa for easier detection of logic errors and can be
used by the programmer to check off debugged paths

2515003 0001340 0000002 2600002
0000200 2700023 2700015 2510015
2504002 0300001 0020201 0321277
1420001 0437732 2600022 0220201
2600002 0000000 0QO00000C 0000000
0000000 2001777 0000000 0ODO0OOC

within the program. Because this provides the pro-
grammer with an indication of what portiens are
completed, debugging time and check-out time can be
reduced,

During debugging, if the programmer uses valid input
data and predetermined answers at various program
check-points, he can use flow charts as an aid in
error location or bracketing, thereby reducing de-
bugging time and machine time requirements.

Memory Dumps

During debugging, memory dumps are essential. Sev-
eral types of dumps are avatlable but the most fre-
quently used are octal dumps.

The quickest dump of memory is obtained by pressing
the memory dump button on the Printer Controller.
This automatically produces an octal dump (Figure
48), starting at memory location 0000 and continues
until the manual clear button on the printer does not
stop automatically when the entire memory has been
dumped, but continues looping through memory until
the clear button is pressed.

The octal dump that is most frequently used provides
the octal memory location for each eight (8) word line
of print {column 1 of Figure 49), If the words for
a line of print are identical to those of the last line
printed, the line is skipped. This saves the number
of lines printed and machine time required for
dumping. This routine is a program feature and thus
must be either in memory or read in from cards or
tape.

Memory can also be dumped on magnetic tape. Nor-
mally, this type of dump is intended for later use by
rerun or recovery routines and, in the case of long
running programs, should be done periodically. Rou-
tines are then available to list these tapes via the
high-speed printer.

2500201 2500004 2516006 2600006
2514002 2601277 2504522 2700031
0100200 2514003 2504032 0300200
2514002 2600002 2514006 2600036
0000000 Q000000 0000000 0000000
0000000 CO000000 0000000 0000000

Figure 48, Printer Controller Qctal Memory Dump

107

Qectal

Location

0000000 0001340
00230 0060000 0000002 2606060 Q000000
20240 GOO000O0 Q000000 0000000 0000000
00250 Q000000 2001777 0000000 0000000
20260 0000000 Q000000 0000000 Q000000
Q0400 0060126 00LOT 71 0030606 Q012604
O0L10 Q606060 0606001 0004002 0606060
00420 0112200 0032322 0510200 OL46060
00430 0606060 0606060 0606060 2606077
Q044G Q000000 0000000 0000000 0000000

gO00Q00 Q000017 2516006 2600002
0000000 0000000 0000000 0000000
0000000 0000000 000Q0CGC 0000000
0000000 0000C00 0000C0C 0000000
0000000 0000000 0000000 0000000
0112100 0052322 0510i01 0LL4E060
0060126 00LO271 0000606 0012604
0606060 0606001 000400 0606060
0000000 0000000 0000000 0000000
Q000000 0000000 0000000 0000000

Figure 49, Programmed Octal Memory Dump

Memory dumps when properly utilized are very in-
formative and very efficient since only a small amount
of computing time is used when dumping through the

high-speed printer. The advantages of a memory
dump are:

a. It gives the results of any program modifi-
cation that may have been done.

b. Programmer can check memory to see that
information is correct and in the proper

locations.

¢, It gives temporary or final results in key
memory locations up to the time memory
was dumped.

d. It shows input or test data being used as a

program is run.

Memory dumps via the typewriter or card punch con-
sume computer time and should be used only when a
high-speed printer is not available.

Memory dumps should be used frequently during
debugging. However, if they prove insufficient, then
tracing may provide the solution,

TRACING

The TRACE routine can be used when other techniques
have failed. However, at first, trace only the portions
of the program that are known or suspectedto contain
bugs. If it then becomes necessary, trace as much of
the program as required. Tracing canbe an extremely
powerful debugging tool hut often its use is abused.
Tracing is time-consuming and thus is expensive when
used to excess.

Options are available with most trace routines that

may supply the desired information without tracing
each program instruction.

Typical options are:

1. Snapshot Option

This type lists index registers 0, 1, 2, and
3, and registers P, I, A, andQ before a BRU,
SPB, or SEL instruction is executed.

2. Single Address Option
This type lists the same registers as the
SNAPSHOT option, only when a specific
address is referenced.

3. Normal Option

The same registers listed in the other types
are printed before each instruction is exe-
cuted.

Tracing output is normally through the high-speed
printer.

Loaders

When the program deck from GAP is in binary form,
a binary loader deck is used to readthe GAP program
deck into the proper memory locations.

During debugging, it is best to use a binary loader
with octal correction cards. This type of loader will
read into memory the binary deck and then read the
octal corrections into the specified memory worda.
Thus, errors can he corrected without repeated re-
assembly of the symbolic deck and, when the program
is completely debugged, a corrected symbolic deck
can be produced in a single new GAP assembly. Nor-
mally a loader, such as the Lower Memory Binary
Loader for Binary Deck with Octal Correction Cards,

108

B TR | \

L L R RN R RN AN R R NN NN N RN RN NI RN NN R RN RN N NN a N RN R R RN AN RN Y
LI)
[N

TNIRNNTIREB TN ANARTANRI EOHNEBE N ANR AU MBATRAANIRNHBSNINBIANNORIKN AR RS aR®

he
1?7
11 RN RRR RN R R R R R R R R AR R R R A R RN R R AR R AR R AR R R R RN RN RN

1
3
1
R R R Rl S R R R R R N N R R R E R R R R R F R R S R R R R R R R SR R NN R R R R R R R R
T3 a A B B0 8930930080503 033030930930333330301330333310330330333332333933
LT 004 0000000030 00001 i
I R R R R R A R R R R R R R R R R R A R E R R R R I A R R R R X R R R R R R R R B
SR e bbb el Es b GEE A FEEFERGEEE Rk SR EEhG RO RGEERGEEEE0BE6EEFG6C6
R R R R R R S R R NN RN RS RN
LR R R R R R N R R RN R N R R RN R RN R N RN RN RN E NN AR R RN RN RN FA N AN
[R R R R R SRR RN R R AR ERRENEREERERRL]
LitatETag Y an

UHNEUHAH I AN NN AATIANN OO XN AT B

For use with a binary loader containing
an octal correction subroutine to change
a specific memory location.

Figure 50. Qetal Correct'ion Card

CD225B1.003 is used. To illustrate loader and cor-
rection card usage, the deck set-up using octal
corrections for Routine CD225B1, (03 is shown:

rogram
ransfer Card

C(%‘tgt}tions

Binary
Deck

Loader
er Cardg

The octal corrections are punched as follows: One
card is punched for each change tobe made, Columns
5 through 9 contain the oetal address and columns 12
through 18 contain the octal contents required, Figure
50 shows a sample octal correction card,

When the program is considered debugged, the cor-
rections should be made to the source deck and the
program reassembled. A final checkout should now
be made with the new object deck.

PROGRAM DOCUMENTATION

Accurate, up-to-date program documentation can
produce considerable savings in programming and
operator effort, as well ag computer time. Efficient
operation of a computer system requires that changes

or correction to operating programs be made quickly
and correctly. Without adequate documentation,
changes and corrections may become difficuit to ac-
complish. Since each computer installation has dif-
ferent characteristics, program documentation can
vary from site to site. However, a basic pattern can
be used by each system.

Run Book

A RUN BOOK should exist for every programm run
within a system and should contain documentation 8o
complete that modifications can be made with minimum

effort. Also, if trouble develops, the spurce can be
readily found. A typical run book would contain the
following:

A. Run Number and Title.

B. Name of Programmer, Date Completed, and Date
of Last Modification.

C. A Concise Description of what the run is to
accomplish,
D, A Write-up containing all internal and external

controls pertinent to the program, including:
1. A completed Operator Instruction or Run
Form that contains,

a. Average run time andprocedure to follow

if established time limit is exceeded.
b. Console switch settings and brief de-
scription of each.

109

¢. Error and special procedure loops with
brief explanation of each.

d. Tape controller and input and output tape
handler numbers.

e. Identification and disposition of* tapes.
f. Rerun and restart procedure.

g. All peripheral device set-ups and plug
designation.)

2. Completed description and Layout Forms for
all input and output.

3. Memory Allocation Layout
a. Mark input and output areas
b. Program and subroutine areas

c. Working storage areas identifying each
location used

d. If overlays are used, identify areas in
which it occurs.

Run Diagram and Flow Chart

An up-to-date run diagram and an accurate flow
chart should be in the Run Book. GAP coding
reference points should be marked or identified
on the flow chart. This provides references
between the operating program and the flow chart
providing for easier program corrections.

Sample Printer Output

If the high-speed printer is used during the run,
a sample of the output can be extremely useful,
The samples should be marked with the runnum-
ber,

GAP Listing

The GAP program listing can be included in the
run book. If the GAP listing is in a separate
binder, indicate the binder number for quick
location of the program. Any corrections or
modifications to the listing should be entered in
red and initialled and dated if the program is not
to be reagssembled at this time,

bBlE-229

110

APPENDIXES

A. REPRESENTATION OF GE-225 CHARACTERS

C. OCTAL LIST OF GE-225 INSTRQCTIONS

B. ALPHABETIC LIST OF GE-225 INSTRUCTIONS

111

APPENDIX A.

REFPRESENTATION OF GE-225 CHARACTERS
HIGH CONSOLE HOLLERITH BCD
CHARACTER SPEED TYPEWRITER PAPER TAPE CODE BCD MAGNETIC
PRINTER CHARACTER CHARACTER {FUNCH MEMURY TAPE
BYMDBOLS OR ACTION {6 CHANNEL) 1N ROWS) {OCTAL* {OCT ALY
1 o 2 Epace 0 o0 12
1 1 1 1 1 [01
2 2 2z 2 2 [A 0z
3 3 3 3 3 03 U3
i 4 4 4 1 04 [
i 5 5 5 5 [05
& 5 [& & 06 06
7 T H H 7 07 07
4 [3 3 5 10 10
4] 4 #] 11 11
A A A / 12-1 21 51
8 B B 5 12-2 2z B2
C [¥] C T 12-3 23 §3
[7] 7} [i] [T 12-4 21 hid
E E E [12-5 23 65
F F F W 12-¢ 24 £6
G [+ [H X 12-7 27 [
H H H ¥ 12-8 30 T
[1 1 Z 12-4 a1 71
J J d J 11-1 4l 41
K K K K 1i-2 42 42
L L L L 11-3 43 43
M M M M 11-4 44 +4
] N b N 11-5 45 45
[5] [[[+ 11-6 46 46
P P P P 1i-7 47 47
@ Q g < 11-§ 50 5
R] R R 11-3 51 51
3 5 8 B -2 52 22
T T T [t -3 63 23
] [i] [} o -4 54 24
v ¥ i E -5 65 25
W w w F -6 56 26
X X X G] 67 27
¥ X Y H -8 70 W0
z z Z 1 0-g 71 3l
+ + '] 12 a0 60
- - - - 11 40 40
Space Blank Blank & Blank i1 20
/ / A 01 [31 21
-8 12 12
¥ / Stog 3-8 13 13
a @ 4-4 14 14
{underline) - 5-8 15 15
= = &8 15 1%
7-8 17

12-2-8 Jz* T2

0 12-0 yo*
. . 12-3-§ 33 73
12-4-# 3 T4
12-5-8 35 5
Tab 12-6-8 36 76

Carrilage

Return 12-7-8 37 ks
- 11-0 52¢ 52
11-2-8 52* 52
] 3 $ [} 11- 3-8 53 53
* . 11-4-8 54 54
11-5-8 55 55
11-6-8 56 56
11-7-8 57 57
Print Red D-2-§ T2 ag
: +] 73 33
k. % 4-8 4 4
{ C Frint Black D-5-8 75 35
) 3 Tab 2-6-8 76 36
Delete -7-8 ki 31

*The 400 card per minute card reader reads 11-0 and 11-2-8 as 52 and 12-0 and 12-2-8 as 32, The 1000 carde per

mingle card reader treats 11-2-8 and 12-2-8 a8 lovalld charscters.

12-06 for 32,

The card punch punches only 11-0 for 52 and

**The OCTAL notation is 2 shorthand for bisary representation. Conversion belween the two representations gan
ba done mentally. In the OCTAL eyatem, there are eight admieeible symbols: 0,1, 2, 3, 4, 5, 6, 7. Each may

represant {(when used) 6 maximum of thres binary bits.

ble- 228

113

APPENDIX B. OCTAL LIST OF GE-225 INSTRUCTIONS

Word Word
Octal Mnemonic Times Octal Mnemonic Times
0000000 LbaA Y X 2 05MMMMM RTB M T 2
Load A Register TTNNNNN (blank) N
_ Read Tape Binary
0106000 ADD Y X 2
*Decimal Add 2 0600000 LDX Y X 3
Load X
200000 5UB Y X 3
*Decimal Subtract 0600000 SLwW N 2
NNOOG00
0200000 SUB Y X 3 Slew Paper N Lines
Subtract
0700000 SPB Y X 2
0200000 WEF T 2 Store P and Branch
TTOO000
Write End of File 0X00000 SLT K 2
XX00000
2MMMMM WD M T 2 Slew Paper to Tape Punch
TTNNNNN {blank) N
Write Tape Decimal 1000000 DLD Y X 3
Double Length Load
0300000 STA Y X 2
Store A 1020000{N=2) RED M N 2
Read Decument Single
03MMMMM WTB M T 2
TTNNNNN (blank) N 1040000(N=2) RDC M N 2
Write Tape Binary Read Document Continuously
0400000 BXL K X 3 1060000(N=2) PKT X N 2
Branch If X Is Less Than Pocket Select
0420000{N=1) RSD M N 2 1100000 DAD Y X 3
Read Document Single * Double Decimal Add 3
0440000(N=1) RDC M N 2 1100000 DAD Y X 3
Read Document Continuously Double Length Add
0460000{N=1) PKT X N 2 1100000{N=2) HLT M N 9
Pocket Select Halt Continuous Feeding
04MMMMM RTD M T 2 1120000(N=2) ERB N 2
TTNNNNN {blank) N 0000000
Read Tape Decimal End Read Busy
0500000 BXH K X 3 1200000 DSU Yy X 5
Branch If X Is Higher Than * Double Decimal Subt%act
or Equal To
1200000 DSU Y X 5
0500000(N=1) HLT M N 2 Double Length Subtract
Halt Continuous Feeding
1200000 RRF N F 2
0520000(N=1) ERB N 2 0OMMMMM (blank) M
0000000 Read from DSU F
End Read Busy

*Optional Instruction

(G- 229

115

Word Word
Octal Mnemonic Times Octal Munemonic Tintes
1201000 RRD N F 2 23MMMMM WTS M T 2
0OMMMMM {blank) M TTNNNNN {blank} N
Read from DSU F Write Tape Special Binary Mode
1202000 RAW N F 2 2400000 MOV Y 4+ 2N
0000000 (hlank) =zero Move
Read After Write Check
2500000 PRF F 2
1300000 DST Y X 3 MMMMMMM OCT (DSU Address)
Double Length Store Position DSU File
1400000 INX K X 3 2500004 HCR pi
Increment X Halt Card Reader
14MMMMM RBD M T 2 2500005 OFF 2
TTNNNNN (btank) N Power Off (Direct 1/0 Devices)
Read Backward Decimal
2500006 RET 2
1500000 MPY Y X 9to 23 Read Paper Tape
Multiply
2500006 TYP 2
Type
2500008 WPT 2
15MMMMM RBB M T 2 Write Paper Tape
TTNNKNNN {blank}
Read Backward Binary 2500007 TON 2
Typewriter On
1600000 DVD Y X 26 to 29
Divide 2500011 RCS 2
Read Control Switches
1600000 BKW T 2
TTO00000 2500015 PON 2
Backspace and Position Write Head Punch On
1700000 STX Y X 3 2500016 HPT 2
Store X Halt Paper Tape Reader
2000000 EXT Y X 3 2500014 RON 2
Exiract Paper Tape Reader On
2000000 WPL Y N 2 2500P20 SEL P X 2
D1YYYYY Select
Write Print Line
2504001 LAQ 3
2000000 RWD T 2 Load A from @
TTGO000
Rewind 2504002 LDZ 3
Load Zero into A Register
2100000 *CAB Y 2to4
Compare and Branch 2504004 LQA 3
Load @ from A
2200000 sDCB Y 2to 6
Double Compare and Branch 2504005 XAQ 3
Exchange A and Q
2300000 ORY Y X 3
Or A into Y 2504006 MAQ 3
Move Ato Q
* This instruction is an optional feature.

Gle-22%

116

Word Word
Octal Mnemonic Times Octal Mnemonic Timey
2504012 NOP 3 250YY02 WCD Y 2
No Operation Write Card Decimal
2504022 LDO 3 250YY03 wCB Y 2
Load One into A Register Write Card Binary
2504032 ADO 3 250YY10 RCF Y 2
Add One Read Cards Full
2504032 ADO Add One 3 250YY12 RCM Y 2
*Add One Decimal 3 Read Cards Mixed
2504040 CHS 2 250YY17 WCF Y 2
Change Sign of A Register Write Cards Full
2504102 LMO 3 2510000 SRA K 2 to 12
Load Minus One into A Register Shift Right A Register
2504112 SBO Subtract One 3 2510040 SCA K Z2to 12
*Subtract One Decimal 3 Shift Circular A Register
2504202 *LAC 3 2510100 SNA K 2 to 12
Load A Register from C Register Shift N and A Right
2504210 *LCA 3 2510400 SAN K 2 to 12
Load C Register from A Register Shift A and N Right
2504502 CPL 3 2511000 SRD K 2 to 12
Complement A Shift Right Double
2504522 NEG 3 2511100 NAQ K 2to 12
Negate A Shift N, A, and Q Right
2506YY3 *SXG Y 2 2511200 SCD K 2to12
Select X Register Group Shift Circular Double
2506011 SET DECMODE 2 2511400 ANQ K 2tol2
Set Decimal Mode Shift A into N and @
2506012 SET BINMODE 2 2512000 SLA K 2 to12
Set Binary Mode Shift Left A Register
2506015 SET PST 2 2512200 SLD K 2to012
Set Automatic Priority Interrupt On Shift Left Double
2506016 SET PBK 2 2513000 NOR K Jto 12
Set Automatic Priority Interrupt Off Normalize the A Register
250YY00 RCD Y 2 2513200 DNO K 2to 12
Read Cards Decimal Double Length Normalize
250YY01 RCB 2 2514000 BOD 2
Read Cards Binary Branch on Odd
2514001 BMI 2

* This instruction is an optional feature.

@ED(

Er

-

J

Branch on Minus

117

Word Word
Octal _Mnemouic Times Octal Mnemonic Times
2514002 BZE 2 2514P21(K=2) BCS SKR P 2
Branch on Zero Branch on Document Handler
Ready
2514003 BOV 2
Branch on Overflow 9514P2°2 BCS BET P 2
Branch on End of Tape
2514004 BIE 2
Brauch on Parity Error 2514P22 BCS BOP P 2
Branch on Printer Qut of Paper
2514005 BNR 2
Branch on N Register Ready 2514P22(File 1) BCB FKR P 2
Branch on File K Ready
25140086 BCR 2
Branch on Card Reader Rea 2514P22(K-1}) BCS NPK P 2
Branch on No Pocket Decision,
2514007 BPR 2 Document Handler K
Branch on Cuard Punth Ready
2514P23 BCS BOV P 2
2514720 BAR BAR T 2 Branch on Printer Buffer Overflow
Branch on AAU Ready
2514P23 BCS BRW P 2
2514721 BAR BMI 7 2 Branch on Tape Rewinding
Branch on AAU Minus
2514P23(File 2) BCS FKR P 2
2514722 BAR BZE ¥ 2 Branch on File K Ready
Branch on AAU Zero
2514P23(K=2) BCS NPK P 2
2514723 BAR BOV 1 2 Branch on No Pocket Decision,
Branch on AAU Overflow Document Handler K
2514724 BAR BUF 7 2 2514P24 BCS DBPE P 2
Branch on AAU Underflow Branch on Mag Tape
2514727 BAR BER T 2 Parily Error
Branch on AAU Error 2514P24 BCS BSA P 9
Branch on Printer Slew Alert
2514P20 BCS BPR P 2
Branch on Printer Ready 2514P24(File 3) BCS FKR P 9
Branch on File K Ready
2514P20 BCS BRR P 2
Branch on DSU Controller Ready 2514P24(K-1} BCS FSK P 2
Branch on Feeding, Document
2514P20 BCS BTR P 2 Handler K

2514P20(K-1)

2514P21
2514P21

2514P21(File 0

[:]
1 A
[:3 RETECIE,

P

&

Branch on Tape Controller

BCS SKR P 2
Branch on Documenl Handler K
Ready

BCS BAA P 2
Branch on Any Alert
BCS BEF P 2

Branch on End of File

} BCS FKR P 2
Branch on File K Reudy

2514P25

2514P25{K=2}

2514P26

2514P26(K=1)

2014P26

BCS BIO P 2
Branch on Mag Tape 1/0
Buffer Error

DsU
BCS FSK P 2
Branch on Feeding, Decument
Handler K

BCS BME P 2
Branch on Mod 3 or 4 Error

BCS ICK P 2
Branch on Invalid Character,
Document Handler K

BC3 ICK P 2
Branch on DSU Parity Error

118

Word Word
Octal Mnemonic Times Qctal Mnemonic Times
2514P27 BCS BER P 2 2516005 BNN 2
Branch on Error Branch on N Register Not Ready
2516006 BCN 2
2514P27(X-2) BCS ICK P 2 Branch on Card Reader Not Ready
Branch on Invalid Character,
Document Handler K 2516007 BPN 2
Branch on Card Punch Not Ready
2514P30(K=1) BCS SKE 2
Branch on Any Error, 2516720 BAR BAN 7 2
Document Handler K Branch on AAU Not Ready
2514P31 BCS FAE P 2 2516721 BAR BPL 7 2
Branch on Error - On Apny File Branch on AAU Plus
2514P31(K=2) BCS SKE 2 2516722 BAR BNZ 7 2
Branch on Any Error, Branch on AAU Not Zero
Document Handler K
2516723 BAR BNQ 7 2
2514P32(K-1) *BCS DQK 2 Branch on AAU No Overflow
Branch on Document TCD Correct,
Document Handler K. 2516724 BAR BNU 7 2
’ Branch on AAU No Underflow
2514P32(File 0) BCS FKE P 2
Branch on File K, File Error 2516727 BAR BNE 7 2
Branch on AAU No Error
2514P33(K=2) *BCS DQK 2
Branch on Document TCD Correct, 2516P20 BCS BPFN P 2
Document Handler K. Branch on Printer Not Ready
2514P33(File 1) BCS FKE P 2 2516P20 BCS BRN P 2
Branch on File K, File Error ' Branch on DSU Controller
Not Ready
2514P34(File 2) BCS FKE P 2
Branch on File K, File Error 2516P20 BCS BTN P 2
Branch on Tape Controller Not
2514P35(File 3) BCS FKE P 2 Ready
Branch on File K, File Error
2516P20(K=1) BCS SKN P 2
2514PCC BCS XXX P 2 Branch on Document Handler K
Branch on Controller Selector Not Ready
2516000 BEVY 2 2516P21 BCS BNA P 2
Branch on Even Branch on Printer No Alert
2516001 BPL 2 2516P21 BCS BNF P 2
Branch on Plus Branch on No End of File
2516002 BNZ 2 2516P21(File 0} BCS FKN P 2
Branch on Non-Zero Branch on File K Ngt Ready
2516003 BNO 2 2516P21(K-2) BCS SKN P 2
Branch on No Overflow Branch on Document Handler
K Not Ready
2516004 BPC 2
Branch on Parity Carrect 2516P22 BCS ENP P 2

* This instruction is an optional feature.

Branch if Printer Not Out of Paper

BlE-228

119

Word Word
Qctal Mnemonic Times Octal Mnemonic Times
2516P22 BCs BNT P 2 2516P27{K-2) BCS VCK 2

Branch on No End of Tape

2516P22{File 1) BCSE FKN P 2
Branch on File K Not Ready
2516P22(K-1) BCS PDK P 2
Branch on Pocket Decision,
Document Handler K

2516pP23 BCS BNO P 2
Branch on No Printer Buffer
Overflow

2516P23 BCS BNR P 2

Branch on No Tape Rewinding

2516P23(File 2) BCS FKN P 2
Branch on File K Not Ready

2516P23{K-2} BCS PDK P 2
Branch on Pocket Decision,

Document Handler K

2516P24 BCS BNS P 2
Branch on No Printer Slew Alert
2616P24 BCS BPC P 2

Branch on Mag Tape
Parity Correct

2516P24(File 3) BCS FKN P 2
Branch on File K Not Ready
2516P24(K-1) BCS NFK P 2
Branch on Not Feeding,
Document Handler K
2516P25 BCS BIC P 2
Branch on Mag Tape I/0
Buffer Correct
2516P25(K=2) BCS NFK P 2
Branch on Not Feeding,
Document Handler K

2516P26 BCS BNM P 2
Branch on No Mod 3 or 4 Error
2516P26 BCS RPC P 2

Branch on DSU
Parity Correct

BCS VCK 2
Branch on Valid Character,
Document Handler K

2516P26(K=1)

BCS BNE P 2
Branch on No Error

2516P27

Branch on Valid Character,
Document Handler K

2516P3G(K=1) BCS SKC 2
Branch on Document Handler
K Correct

2516P31 BCS FAC P 2
Branch on No Error - Any File

2516P31(K=2) BCS SKC 2
Branch on Document Handler
K Correct

2516P32{File 0} BCS FKC P 2

Branch on File K, No Unit Error

BCS NQK 2
Branch on Document TCID Not
Correct, Document Handler K

2516P33(File 1) BCS FKC P 2
Branch on File K, No Unit Error

2516P32(K=1)

2516P33(K=2) *BCS NGQK 2
Branch on Document TCD Not

Correct, Document Handler K

2516P34(File 2) BCS FKC P 2
: Branch on File K, No Unit Error

2516P35{File 3} BCS FKC P 2
Branch on File K, No Unit Error

2516PCC BCS XXX P 2

Branch on Controller Selector
25MMMMM RTS M T 2
TTN NNNN {blank) N

Read Tape Special Binary Mode
2600000 BRU Y X 1

Branch Unconditionally
2700000 STO Y X 3

Store Operand Address
3000000 FLD Y 12 usec

Loud Auxiliary Arithmetic Unit
JOYYYYY WFL Yy X N 2
01XXXXX (WPL)

Write Format Line

* This instruction is an optional feature

BE-275

120

Word Word
Mnemonic Octal Times Mnemaonic QOctal Times
3100002 MAGQ A 49. Sysec 3500010 SET FIXPOINT 49. 5 usec
A Irwpvg AX to Q}x J Set Fixed- Point Mode
[A
3100010 SET NFLPOINT 49.5 usec 35MMMMM RBS M T 2
Set Normalized Floating- Point Mode TTNNNNN {blank} N
Read Backward Special Binary
IYYYYY FAD Y Min. 162 usec¢)
Max. T09usec IBYYYYY FMP Y Min. 297 usec
AAU Add Max. 10862 usec
AAU Multiply
3200002 LQA A 49. S5usec
Load QX From AX 3600002 LAQ A 49.5usec
Load AX From QX
3200010 SET UFLPOINT 49.5 usec
Set Unnormalized Floating-Point BYYYYY FDV Y Min.814.5usec
Mode Max.1095 usec
BLYYYYY F&U Y Min. 162 usec AAU Divide
Max. 709 usec
AAU Subtract 3700000 WRF N F 2
O0MMMMM (blank) M
3300000 FST Y 72 usec Write on MRADS Unit F
Store Auxiliary Arithmetic Unit
3701000 WRD N r 2
35G0002 XAQ A 117 usec 0OMMMMM {blank} M

BE-225

Exchange AX and QX

Write on DSU F

121

APPENDIX C. ALPHABETIC LIST OF GE-225 INSTRUCTIONS

Word Word
Mnemonic Octal Times Mngmonic Octal Times
ADD Y X 0100000 2 BCN 2516006 2
*Decimal Add 2 Branch on Card Reader Not Ready
ADD Y X 3100000 2 BCR 2514006 2
Add Branch on Card Reader Ready
ADO 2504032 3 BCS BAA P 2514P21 2
Add One Branch on Any Alert
ADO 2504032 3 BCS BEF P 2514P21 2
*Add One Decimal Branch on End of File
ALF (Pseudo) BCS BER P 2514P27 2
Alphanumeric Branch on Error
ANQ K 2511400 2to 12
Bhift A into Nand Q BCS BET P 2514P22 2

Branch on End of Tape
BAR BAN 7T 2516720 2

Branch on AAU Not Ready BCS BIC P 2516P25 2
Branch on Input/Output
BAR BAR 7 2514720 2 Buffer Correct

Branch on AAU Ready
BCS BIO P 2514P25 2

BAR BER 17 2514727 2 Branch on Input/Output
Branch on AAU Error Buffer Error

BAR BMI T 2514721 2 BCS BME P 2514P26 2
Branch on AAU Minus Branch on Mod 3 or 4 Error

BAR BNE 7 2516727 2 BCS BNA P 2516P21 2
Branch on AAU No Error Branch on Printer No Alert

BAR BNO T 2516723 2 BCS BNE P 2516P27 2
Branch on AAU No Qverflow Branch on No Error

BAR BNU 7 2516724 2
Branch on AAU No Underflow BCS BNF P 2516P21 2

Branch on No End of File
BAR BNZ 7 2516722 2

Branch on AAU Not Zero BCS BNM P 2516P26 2

Branch on No Mod 3 or 4 Error
BAR BOV 7 2514723 2

Branch on AAU Overflow BCS BNO P 2516P23 2
Branch on No Printer Buffer
BAR BPL 7 2516721 2 Overflow

Branch on AAU Plus
BCS BNP P 2516P22 2

BAR BUF 1 2514724 2 Branch if Printer Not Out of
Branch on AAU Underflow Paper

BAR BZE 17 2514722 2 BCS BNR P 2516P23 P
Branch on AAU Zero Branch on No Tape Rewinding

*Optional Instruction

bt~ 225

123

Word Word

Muemonic Octal Times Mnemaonic Octal Times
BCS BNS P 2516P24 2 BCS FAC P 2516P31 2
Branch on No Printler Branch on No Error - Any File
Slew Alert
BCS FAE P 2514P31 2
BCS BNT P 2516P22 2 Branch on Error - On Any File

Branch on No Ead of Tape
BCS FKC P 2516P32(File 0) 2

BCS BOP P 2514P22 2 or 2516P33{File 1)
Brunch on Printer Out of or 2516P34(File 2)
Paper or 2516P35{File 3}
Branch on File K, No Unit Error
BCS BOvV P 2514P23 2
Branch on Printer Buller BCS FKE P 2514P32(File 0) 2
Overflow or 2514P33(File 1}
or 2514P34(File 2}
BCS BPC P 2516P24 2 or 2514P35(File 3}
Branch on Tape Parity Correct Branch on File K, File Error
BCS BPE P 2514P24 2 BCS FKN P 2516P21(File 0) 2
Branch on Tape Parity Error or 2516P22(File 1)
or 2516P23(File 2)
BCS BPN P 2516P20 2 or 2516P24{File 3}
Branch oo Printer Not Ready Branch on File K Not Ready
BCS BPR P 2514 P20 2 BCS FKR P 2514P21(File 0) 2
Branch on Printer Ready or 2514P22(File 1)
or 2514P23{File 2}
BCS BRN P 2516P20 2 or 2514P24(File 3)
Branch on DSU Controller Branch on Fite K Ready
Not Ready
BCS FSK P 2514P24{K=-1) 2
BCS BRR P 2514 P20 2 aor 2514P25(K=2)
Branch on DSU Controller Branch on Feeding, Document
Ready Handler K
BCS BRW P 2514P23 2 BCS ICK P 2514P26(K-1) 2
Branch on Tape Rewinding or 2514P27(K=2)
Branch on Invalid Character,
BCS BSA P 2514P24 2 . Document Handler K

Branch on Printer Slew Alert
BCS NFK P 2516P24(K=1) 2

BCS BTN P 2516P20 2 or 2518P25(K-2)
Branch on Tape Controller Branch on Not Feeding,
Not Ready Document Handler K
BCS BTR P 2514P20 2 BCS NPK P 2514P22(K~1) 2
Branch On Tape Controller Ready or 2514P23(K-2)
Branch on No Pocket Decision,
*BCS DQK 2514P32(K=1} 2 Document Handler K
or 2514P33(K=2)
Branch on Document TCD Correct, *BCS NQK 2518P32(K=1} 2
Document Handler K. ’ or 2518P33(K-2)
Branch on Document TCD Not
* This instruction is an optional feature Correct, Document Handler K

b~ 225

124

Word Word
Mnemonic Octal Times Mnemonic Octal Times
BCS PDK P 2516P22(K=1) 2 BNZ 2516002 2
or 2518P23(K=2) Branch on Non-Zero
Branch on Pocket Decision,
Document Handler K BOD 2514000 2
Branch on Odd
BCE RPC P 2516P26 2
Branch on DSU Parity Correct BOV 2514003 2
Branch on Overflow
BCS RPE P 2514P2G 2
Branch on DSU Parity Error BPC 2516004 2
i t
BCS SKC 2516P30(K=1} 2 Branch on Parity Correc
or 2516P31{K=2) 9
Branch on Document Handler K BPE Branch on Pa?‘i5t140E{;ior
Correct ¥
BCS SKE 2514P30(K=1) 2 BPL ek on Pioe 00! 2
or 2514P31{K=2)
Branch on Any Error, Document BPN 2516007 9
Handler K Branch on Card Punch Not Ready
BCS SKN P 2516P20(K-1) 2 BPR 9514007 9
or 2516P2] (K-2) Branch on Card Punch Ready
Branch on Document Handler K
Not Ready BRU Y X 2600000 1
BCS SKR P 2514P20(K=1) 2 Branch Unconditionally
or 2514P21{K=2)
Branch on Document Handler K BSS(PSEL];:}EE:k Started by Symbol
Ready
BXH K X 0500000 3
BCS VCK 2516P26(K-1) 2 Branch if X is Higher Than or
or 2516P27{K=2} Equal To
Branch on Valid Character,
Document Handler K BXL K X 0400000 3
BCS XXX P 3514 PCC 9 Branch If X is Less Than
or 2516PCC
Branch on Controller Selector BZE Branch on ZEE{SJMOOZ 2
BEV Branch on E 2516000 2 *CAB Y X 2100000 2 to 4
ranch on Lven Compare and Branch
BKW T 1600000 2 CHS 2504040 9
TTO0000 Change Sign of A Register
Backspace and Position Write
Head CPL 2504502 3
Complement A
BMI 2514001 2
Branch on Minus DAD Y X 1100000 3
Double Decimal Add 3
BNN 2516005 2
Branch on N Register Not Ready * Thig instruction is an optional feature.
BNO 2516003 2
Branch on No Overflow
BNR 2514005 2

Branch on N Register Ready

125

Word Word
Mnemouic Octal Times Mnemonic Octal Times
DAD Y X 1100000 3 FAD Y JIYYYYY Min.162 usec
Doubile Length Add Max.709 usec
AATU Add
I *DCB Y X 2200000 2to 6

Double Compare and Branch

DDC {Pseudo)

Double Length Decimal

DEC (Pseudo)

DLD

DNO

bvD

EJT (Pseudo)

END(Pseudo)

EQO (Pseudo)

EQU {Pseudo}

ERB

EXT

Decimal
Y X 1000000 3
Double Length Load
K 2513200 2to12
Double Length Normalize
Y X 1300000 3
Double Length Store
Y X 1200000 5
* Double Decimal Subtract
Y X 1200000 5
Double Length Subtract
Y X 1600000 26 1o 29
Divide
Eject Printer Paper
End of Program
Equals Octal
Equals
N 0520000(N=1) 2
0000000
or 1120000{N=2)
0000000
End Read Busy
Y X 2000000 3
Extract

* This instruction is an optional feature.

Bl 225

FDC {Pseudo)

FOV

FLD

FMP

FS8T

FSU

HCR

HLT

HPT

INX

*LAC

LAQ

LAQ

*LCA

LDA

Floating Point Decimal

Y IBYYYYY Min. 814. 5usec
Max.1095 usec

AAU Divide

Y 3000000 T2 usec

Load Auxiliary Arithmetic Unit

Y ABYYYYY Min. 297 usec
Max. 1062 usec
AAU Multiply

Y 3300000 72 usec
Store Auxiliary Arithmetic Unit

Y 2YYYYY Min. 162 usec
Max. 709 usec

AAU Subtract

2500004 2
Halt Card Reader

M N 0300000({N=1) 2
or 1100000(N=2)
Halt Continuous Feeding

2500016 2
Halt Paper Tape Reader
K X 1400000 3
Inerement X

2504202 3
Load A Register irom C Register

2504001 3
Load A from Q
A 3600002 49.5 usec
Load AX from QX

2504210 3

Load C Register from A Register

Y X 0000000 2
Load A Register

126

Word Word
Minemonic Octal Times Mnemonic Octal Times
LDO 2504022 3 NOP 2504012 3
Load One into A Register No Operation
LDX Y X 0600600 3 NOR K 2513000 Ito 12
Load X Normalize the A Register
LDZ 2504002 3 OCT {Pseudo)
Load Zero into A Register Octal
LMO 2504102 3 OFF 2500005 2

Load Minus One into A Register

LOC {Pseudo}
Location in Octal

LQA 2504004 3
Load Q from A

LQA A 3200002 49. 5 usec
Load QX From AX

LST {Pseudo}
List

MAL {(Pseudo)
Multiple Alphanumeric

MAQ 2504006 3
Move Ato Q

MAQ A 3100002 49.5 usec
Move AX to QX

* MOV Y 2400000 4 + 2N

Move

MPY Y X 1500000 9to 23
Multiply

NAL (Pseudo)
Negative Alphanumeric

NAM (Pseudo)
Print Name or Title on Each Page

NAQ K 2511100 2tol2
Shift N, A, and Q Right
NEG 2504522 3

Negate A

NLS (Pseudo)
No List.

* This instruction is an optional feature,

Power Off (Direct I/0 Devices)

ORG {Pseudo)
Origin

ORY Y X 2300000 3
Or Ainto Y

PAL (Pseudo)
Multiple Alphanumeric for Printer
with Print Line Indicator
PKT X N 0460000(N=1) 2
or 1060000({N=2)
Pocket Select

PON 2500015 2
Punch On

PRF F 2500000 2

OCT (MRADS

Address) MMMMMMM
Position D3SU File

RAW N F 1202000 2
{blank) zero 0000000
Read After Write Check

RBB M T 1I3MMMMM 2
{blank) N TTNNNNN

Read Backward Binary
RBD M T 14MMMMM 2
{blank) N TTNNNNN

Read Backward Decimal
RBS M T 35MMMMM 2
(blank) N TTNNNNN

Read Backward Special Binary

El=-225

127

Word Word
Mnemonic Octal Times Mnemonic Octal Times
RCB 250YY01 2 SAN K. X 2510400 2 to 12
Read Cards Binary Shift A and N Right
RCD Y 250YY00 2 SBO 2504112 3
Read Cards Decimal Subtract One
RCF Y 250YY10 2 S5BO 2504112 3
Read Cards Full *Subtract One Decimal
RCM Y 250YY12 2 SBR (Pseudo)
Read Cards Mixed Subroutine Call
RCS 2500011 2 SCA K X 2510040 2 to 12
Read Control Switches 8hift Circular A Register
RDC M N 0440000({N=1) 2 5CD K X 2511200 2to 12
or 1040000({N=2) Shift Circular Double
Read Document Continuously
SEL P X 2500P20 2
REM {Pseudo) Select

RON

RPT

RRD
{blank)

RRF
{blank})

RSD

RTB
{blank}

RTD
{blank}

RTS
(blank)

RWD

BE-225

Remarks
2500014 2
Paper Tape Reader On
2500006 2
Read Paper Tape
N F 1201060 2
M OOMMMMM
Read from DSU F
N F 1200000 2
M 0OMMMMM

Read from DSU F
M N 0420000(N=1) 2
or 1020000(N=2)
Read Document Single

M T OSMMMMM 2
N TTNNNNN
Read Tape Binary

M T 04MMMMM 2
N TTNNNNN
Read Tape Decimal

M T 25MMMMM 2
N TTNNNNN
Read Tape Special Binary Mode

T 2000000 2
TTO0000
Rewind

SEQ (Pseudo)

SET BINMODE

SET DECMODE

SET FIXPQINT

SET NFLPOINT

SET

SET

SET UFLPOINT

SLA

SLD

SLT

Check Source Program Card Sequence
Numbers

2506012 2
Set Binary Mode

2506011 2
Set Decimal Mode

3500010 49.5 usec
Set Fixed-Point Mode
3100010 49.5 usec

Set Normalized Floating- Point Mode

PBK 2506016 2
Set Automatic Priority Interrupt Off

PST 2506015 2
Set Automatic Priority Interrupt On

3200010 49.5 usec
Set Unnormalized Floating-Point Mode

K X 2512000 2 to 12
Shift Left A Register

K X 2512200 2to12
Shift Left Double

K 0X00000 2

XX00000
Slew Paper to Tape Punch

128

Word

Word
Mnemaonic Octal Times Mnemonic Octal Times
SLW N 0600000 2 WCD Y 250YY02 3
NNOO0DO Write Card Decimal
Slew Paper N Lines
17 2
SNA K X 2510100 2 to 12 WCF ;rite Cards ﬁﬁﬁ”
Shift N and A Right :
WEF T 0200000 2
SPB Y b4 0700000 2 TT00000
Store P and Branch Write End of File
SRA K X 25310000 2 to 12 WFL N 30YYYYY 2
Shift Right A Register (WPL} Y X 01XXXXX
Write Format Line
SRD K 2511000 2to 12
Shift Right Double WPL Y N 2000000 2
01LYYYYY
STA Y X 0300000 2 Write Print Line
Store A
WPT 2500008 2
STO Y X 2700000 3 Write Paper Tape
Store Operand Address
WRD N F 3701000 2
STX Y X 1700000 3 (blank) M 0OMMMMM
Store X Write on DSU F
SUB Y X 0200000 3 WRF N F 3700000 2
Subtract (blank) M OOMMMMM
Write on DSU F
SUB Y X 0200000 3
*Decimal Subtract WTB M T 03IMMMMM 2
| {blank) N TTNNNNN
] rsx¢ v 2506YY3 2 ' Write Tape Binary
Select X Register Group
WTD M T 02MMMMM 2
TCD({Pseudo) {blank) N TTNNNNN
Punch Transfer Card Write Tape Decimal
TON 2500007 F] WTS M T 23MMMMM 2
Typewriter On (blank) N TTNNNNN
Write Tape Special Binary Mode
TYP 2500006 2
Type XAQ 2504005 3
Exchange A and Q
wWCB Y 250YY03 2
Write Card Binary XAQ A 3500002 117 usec
Exchange AX and QX
Z (Pseudo)

* This instruction is an optional feature.

BlE-228

Octal Operation Code

Jrp—

