g f M

9!&2-5497-2
1BM NO 66-542-01 A
ORIGINATING GROUP
GEMINI CONTENT APPROVED BY
PROGRAMMING
MANUAL

CONTRACT NO

DATE May 24, 1966

Originated By: C. A. Leist
r J. C. Condell

NOTE: Please inform the authors of any corrections or additions.

FEDERAL SYSTEMS DIVISION
_ B ELECTRONICS SYSTEMS CENTER
OWEGO NEW YORK

Section

1

2

S

O e =~ ov oW

Tables

Figures
1

Z

TABLE OF CONTENTS

Description

Scope

Applicable Documents

Gemini Instruction List

Programming Restrictions

ATM Programming Requirements

Gemix.li IGS Program isasig

TCCS Punch Tapes

ATM/AGE Punch Tape Verification Process

Gemini Programming DO'S and DONT'S

Module I Time Sharing Candidates

Data (26 Bit) Breakdown of Module 1
Instruction Breakdownof Module I

Gemini Subroutine Input and Output Arguments
Gemini Operational Program MF-6

Description of Flow in Figure 1

AGE/ATM PUnch Tape Verification Block Diagram
u
TCCS P nch Tape Flow Chart

IGS Program Design and Verification Flow Chart

Page

12
13
14
16

T

GEMINI PROGRAMMING MANUAL

1.0 SCOPE

1.1 This document contains a brief description of the Gemini Instruc-
tions and their use as defined by hardware restrictions, assembler hmlta-
tions and programming experience.

1.2 It is assumed the reader has a basic computer programming
understanding and is somewhat familiar with the Gemini Computer Memory
organization. The documents listed in paragraph 2,1 are a good starting
point for the Gemini novice.

2., APPLICABLE DOCUMENTS

2.1 The applicable documents were used to obtain detail information
on subject matter discussed in this manual and/or are mentioned herein for
using this manual as a handy compilation of documents available relating to
Gemini Programming.

IBM Documents

65-554-0089 Description of Gemini Digital Computer
66.538-01 IBM 7090 DPS Gemini Assembly and Punch
Program

64-542-011 B The Gemini Simulation Reference Manual
$5-.538-.03 ATM Simulator Reference Manual

63-542-01 A Degecription of Gemini Input/Output Information
Relative to the Operational Program

65-542-11 Gemini Simulator Flow Diagré.m
64-547-002 Gemini TCCS Tape Preparation Procedure,
3.0 GEMINI INSTRUCTION LIST

3.1 This section briefly describes the sixteen (16} Gemini instruc-
tions. A more detail description is contained in document IBM no. 63-554-,
0011,

1a

.'}__yrui;u]

HOoP

DIV

PRO

RSU

ADD

SUB.

CLA

AND

The last two bits of the product delay line are zero.

Py /
et Code

0000
(00)g

0001
(01)g

0010
(02)g

0011
(03)g

G100
(04)g

0101
(05)g

GHiag
_(06),,

2

D117
{07)

7
©

Doeseription

The contents of the memory address spoecified by
the operand address are used as a [HOPC (IMop
Constant) to change the next instruction address,
A HOP must be used to change Syllable or Sactor.
The contents of the accumulator are unalfected.

The contents of the memory location specified by
the operand address are divided by the contents
of the accumulator. The 24 bit quotient is in the
quotient delay linc (not the accumulator) and
available at only 4 instruction cycles later by the
SPQ instructions., The contents of the accumula-
tor are undffectled,

Process input or output. The input/output channel
specified by the operand address is read into or
loaded from the accumulator., The accwnulator
will be cleared before loading if bit "A9" cquals

a "1t

Reverse subtract., The conients of the accumu-
lator are subtracted from the contents of the
memory location specified by the operand address.
The resultant remains in the accumulator.

The contents of the memory location specifiad by
the operand address are added to the contents of
the accumulator.

The contents of the memory location specified by
the operand address are subtracted from the con-
Ltents of the accumulator,

The contents of the memory location specificd by
the operand address arc transferred (o the accu-
mulator.

The contents of the memory location spucilied by
the operand address are lopically AND'ed, bit-
Ly-bLil, with the contents of the accumulator., ‘
(3t positions which are "1V in memory and ace-
caumulator, remain ' i withor is "0" (he hit
becomes "0 in accumulator,

2=

Binary/

Symbeol Octal Code
*MPY 1000
(10)g
TRA 1001
(11)g
SHF 1010
(12)8
TMI 1011
‘ (13)g
STO 1100
(14)g

Description

The contents of the memory location specified by
the operand address are multiplied by the con-
tents of the accumulator. The product is in the
quotient delay line (not the accumulator) and
available at 2 instruction cycles later by the SPQ
instruction. The contents of the accumulator are
unaffected,

The next instruction is obtained from the menory
location specified by the operand address within
the same sector and syllable. The contents of
the accumulator are unaffected,

The contents of the accumulator are shifted as
specified by the operand address according to
the following table:

Operand
Coramand Address
Shift Left One Place 030 See Gemini
Shift Left Two Places 040 Assembler
Shift Righ‘t One Place 021 Document
Shift Right Two Places 020 IBM #66-
538-01

Note: If an improper address code is given, the
accumulator will be cleared to zero, While shifting
left, "zeros'' are shifted into the low order posi-
tions; on right shifts, the sign bit condition is
shifted into the high order positions.

Transfer on minus accumulator sign. If the ac-
cumulator sign is positive (0), the next instruction
in sequence is executed (no branch), if the sign

is negative (1), the instruction in memory loca-
tion specified by the operand address is executed,
Syllable and sector remain unchanged. The con-
tents of the accumulator are unaffected.

The contents of the accumulator are stored in
memory at the location specified by the operand
address. The contents of the accumulator are
unaffected,

*#*The multiplicr and multiplicant arc trunciated to 24 bits prlor to a multiply

operation,

The last two bits in the product delay line are zero.

-3 .

Binary/

Symbol Octal Code Description
SPQ 1101 Store product or quotient. The product or quotient
(15)g is stored in memory at the location specified by

the operand address. The contents of the accumulator
are unaffected. - '

CLD 1110 The state of the discrete input, selected by the
(16)8 operand address, is read into all accumulator

bits. Normally an "ON'" condition loads all "lts™

into accumulator and "OFF" results in all "Olg'r,

TNZ 1111 Transfer on accumulator non-zero. If the con-
(17)g tents of the accumulator is zero, the next instruc-
tion in sefuence iz executed {no branch}; if the
contents is non-zero, the instruction in memory
location specified by the operand address is
executed, Syllable and sector remain unchanged.
The contents of the accumulator are unaffected.

4.0 PROGRAMMING RESTRICTIONS. - The Gemini hardware places
certain restrictions or limitations upon the use of the instructions defined
in section 3, In addition tothe hardware restrictions, the 7090 Gemini
assembler introduces restrictions due to the manner in which the symbolic
codes are handled and the manner in which abnormal conditions are taken
care of,

4.1 Hardware Restrictions, - The Gemini Computer has undergone
changes during incorporation of the ATM (Auxiliary Tape Memory) program.
Where these changes affect the programming technique, both computer con-
figurations will be defined as applicable to programming.

4.1.1 Power On

A) Gemini. - Power On causes the instruction located at
00-0-000 (Sector 00, Syllable 0 and Word Time 000) to
be executed, therefore, the program rust start at this
location.

B) Gemini/ATM. - Power On starts at 00-2-000 (Syllable 2)
and in HWM (Half Word Mode). This forces the first
instruction to be located at 00-.2-000 and starting in HWM
implies any data or HOPC will be fetched from Syllable
2 (13 bits) rather than from Syllable 0 and 1 (26 bits),

-4 ' .

5

4,1.2 HWM (Half Word Mode) Operation

4.1.2,1 B8TO or SPQ

A} Gemini. - A store in HWM will store the 10 low order
bits of the accumulator or MQ delay line into the loca-
tion specified by the operand address and cause the re-

maining 16 bits to be zero,

B) Gemini/ATM. - A store 1-n HWM will store all 26 accu-
mulator or MQ delay line bits in memory location speci~
fied.

4,1,2.2 Arithmetic Operations (ADD, SUB, RSU, CLA, AND). - The
memory location specified by the operand will be 'fetched" from Syllable 2
{13 bits) rather than Syllable 0 and 1 (26 bits).

4.1,2.3 HOP. -~ The HOPC (Hop Constant) specified by the operand
will be fetched from Syllable 2. This HOPC (contained in Syllable 2) must
be generated and positioned by the programmer. The 13 bits of the HOPC
contain only the sector and word time (4 bits fox sector plus 9 for the word
time) desired and hardware resets the syllable to 0. Therefore, a HOP
while in HWM will always be forced to syllable 0 and operation will be in
FWM (Full Word Mode).

4.1.2.4 The remaining instructions are unaffected by the HWM opera-
tion.

4.1.3 Power Dissipation. - The Gemini memory, when exercised,
dissipates power. The following formula has been devised to ensure that
the designed power limits are not exceeded by the improper use of instruc-

tions,
NS'4.}.+NR-Z.7+NN
- 3,2
i} N
where:
Ng = Number of STORES {STO, SPQ)
Np = Number of READS (CLA, SUB, ETC)
NNy = Number of MEMORY NO OPS (CLI>, PRO,
TRA, TNZ, HOP)
NT = 35

This naturally imposes somewhat of a restriction on the programmer,
Especially in initialization areas where many quantities are to be set to a
value, These blocks must have *NO OPS interspersed to ensure that the
above power formula is met,

4.1.4 The SPQ following a DIV must be separated from the next
MPY by one or more instructions.

4.1.5 The PRO address X = 6 may be used only to read gimbal
angles., The contents of the gimbal angle counter enters the accumulator
regardless of the Y address,

4.1.7 MPY
A multiplicand that has not been read between its store and first use as
the MPY operand will frova.de low amplitude l's in the two low order
~-23 . . .
positions (2 and 27 . These two bits may fail to be recognized as

1's.

4.1,8 SPQ
Use of the SPQ other than following a MPY or DIV stores zeros in the operand
location. (Assembler STZ (store zeros) is interpreted into an SPQ).

s 5.0 GEMINI ATM PROGRAMMING REQUIREMENTS

5.1 P!.‘fior to coding any Gemini module '"N'' assembly (where N

 is any module assembled around Module I), the detail math flow must be

designed. (Equations scaled for fixed point arithmetic, necessary log1c
added to the system math flow for meeting interface requirements and
‘defme a constant and variable hst) The following rules apply for the

, _detall math ilow design:

5.1.1 , Each column is to start with a letter representmg the

module's mode For example, R1l.1 stands for the Re-entry mode, column
" one and block number 1. ,

5.1.2 Each block in a column is to have a number and each
equation type block is to show the equivalent units on the bottom right~

: hand corner.

5.1.3 The dependent variable scaling is to be shown in the upper
right-hand corner of each detail block.

5.1.4 Every constant used on a detail math flow sheet is to be
defined and all constants per page are to be placed in one group.

5.1.5 Every left-hand symbol (LLHS) referenced by the operational
program is to be shown on the detail math flow.

5.1.6 , AllI/O's are to show 2 reference beside them for a cross-
checking between the program listing and detail math flow.

5.1.7 All subroutine entries are to be standardized. (See
‘Module IV detail math flow for the correct examples.)

5.1.8 All variables are to be subscripted properly in all detail

I":" ’ t
b ::equat%ons. o

5.1, .9 All detail math flow symbols and program symbols are to

,‘be explicitly deflned in the letters and symbols specifications.

“'%Pro 70 instruction or a timing loop.

L]

5.2 One of the main items to consider when programming the Gemini
computer is the power interrupt (Computer Off or Halt). If either one of
these signals occur, the program is brought instantaneously to 00, 2, 000 anc
the program begins its next instruction from this point. In other words,
all counters, address modification and logical choices must be reset to a

known state. _ All fast loop (I/0)
entries are to be inserted after dependent variable calculations so that the
program is not left "hanging''. This prevents a subroutine within the I/0O

from 'blasting' the previous slow loop calculation.

5.3 Each Module "N assembly rmust initialize the six mode HOP
constants to either the first instruction in modified prelaunch (unused
mode switch positions) or the first instruction of the respective modes with
ih module "N',

5.4 When coding the Module "N'' program assembly relative address-
ing (TRA*£2) is to be restricted to Module I only.

5.5 All DCS and MDIU variables are to be insertable at any time
{during a Gemini flight) regardless of the module loaded in the Gemini com-
puter. As a result, none of these addresses are to be time shared in any
module "N' assembly. In other words, these memory locations are not
variable time sharing candidates,

5.6 Module I variables are prime candidates for variable time
sharing and a reference list of these quanties is given in Table I.

5.7 All module "N' assemblies must make the following memory
addresses equal to all zeroes:

Sector Syllable Address OP Code QOperand Address
05 1 000 00 000
05 0 000 00 000

This shall be accomplished by using set instructions, The reason for this
is to cause the Gemini operational program to remain in a one instruction
loop in case the MVR program is not loaded.

5.8 The only type of constant that can be defined as zero in any
module "N assembly is KZERO (Gemini symbolic name). The reason for
this is that the ATM convert program ignores all zero Gernini locations and
will not prepare them for the AGE/ATM punched tapes. KKERO and set
zero instructions are the only exceptions. They contain a bit 34 for identity
in the ATM convert program, Therefore, do not define any zero constant
(including a HOP constant to 00-0-000). in a2 module "N'"' assembly, but use

the constant KZERO when the need arises,

- 8.

5.9 The Mordule T {0ard core) constants may be used in any nodale
T assembly by referring to the associated symbolic name, All of the
Module T eonstants ave to be defined in each Module "N assembly. i)o not
vedeline any of these constants, 1Mailure to adhere to this iron-clad rule
will cause a Module I non-verily error. (Six module 1 nan-verify crrors
are legal because of the mode JIOP constant definition process).

5.10 Tast loops (I/0) must be inserted in the operational progrim
approximately every 50 mis, There is no minimum timing requirement but
the maximuim timing requirement is 60 ms, The recommended 1/0 degign
1$ 55 £ 5 ms. kxceeding the above 60 ms timing vequirement shall cause
the ladder outputs to decay. In cortain cases (SI7CO countdown, radar
sampimg and ATM read) this rule is broken, When done so it must be
rememnbered that the DES and DAS requests remain up for only 75 ms. If
the fast lonps exceed this value (767 ms), a DAS or DOS request will not e

honoroed,

.00 The gimbal angles have a4 minimum and mmaxinouun sampling
e . * } N
rate that must Lhe nyet, That is, a minimwin of 5 g8 between samples and
a maxitoum ol 30 rns for sampling all three gimbal angles.

5. 12, Fach slow loop must not exceed the excuessive time counter
{clock subroutine) which is 1,376 088 secs. The maxinum computer cycle
timme should not exceed 1,200 000s3ces with DAS and DS off in order Lo 1meot

this timing requircment,

5. 13 Favch Germnind computer interface (AGE, DOS, DAS, TRS,
LADDERS, CLOCK) has certain timing roquirements that muast be met.
These are defined i the (ollowing documents: 1 scription uf Gomind
Input/Outymt infoemation Relative Lo the Opaerationat Program. 1M no.

Gi-51.0-01A

.04 The MDIU senling logic is contained in cach module in order to
perodt thexibility in displaying cach MDIU quantity, As a result, the
systen o math flow JIDIG/DCS List is to be referenced for vach MDIU addecss

displicying charicteriglics,

.15 Once the operational program module ©ias heen coded and
asscmbled an audit process is Lo be hmplemented, ” The aaditting feaimn is
tobe composed ol two puople, One of these should be the programmer
responsible for the module and the other one should Le familiar with fiemini
progranwunring, - ‘This team is to do the following:

H

T W

5.15.1 The system diagram is to be checked, block by block, with
the detail diagram to make sure that they agree.

5.15.2 The detailed diagram is to be checked with the program list-
ing coding for correctness,

5.15.3 Each equation in the detail math flow diagram is to be checked
for scaling and proper unit assignment,

5.15.4 All constants are to be cross—éhecked_between the system
flight constant list and the program listing and also between the program
listing and the detail math flow,

5.15.5 The systern flight constant list is to be cross referenced in
the letters and symbol specification, Thus, it, too, is to be checked for
correctness.

5.15.6 The synonymous (variable time sharing) is to be very
thoroughly checked for correctness.

5,15.7 The fast loop entries are to be checked to see that they
do not exceed 60 ms,

5.15.8 The gimbal angles readings are to be checked to see that
a minimum of 5 ms is delayed between each sampling and the maximum
sample time for all three angles does not exceed 30 ms.

5,15.9 Each slow loop is to be checked to see that it does not
exceed the excessive time counter (1.376 seconds) (consider worst case).

5.15.10 Check all variable single point references for validity by
use of the ''variable and assigned addresses’ list in the program listing.

5.15.11 Check to see that all variables are properly initialized or
computed prior to their usage.

5.16 Address modification must be done in such a manner that
instructions or constants do not vary in the ATM tape (that is, the Gemini
Memory must be verified at any time without errors generated by address
modification). See examples of address modification in:

-10-

I. P/L Checksum Logic
2. Frame Change 1 and 2
3. Re-entry Table Look
4. Re-entry Accelerometer Smoothing
5. Radar Table in Rendezvous
5.17 Do not put any comments on a syn card because the assembler

searches the entire card for variables to be syn. It has been found that if a
comment is included, the entire syn card will be ignored.

5.18 LADDERS
The ladders are a capacitor-type storage which requires periodic updating
to prevent decay. This updating should be done at a 50 ms. rate. It has been
determined that the 3 g~ error of the ladder output at a 50 ms. sample rate is
43 ms. An increased sample time beyond 50 ms. will introduce a linear
3¢" error. The upper bound on this linearity holds for sample times within
60 ms.

An example of the 3§ error for a sample rate exceeding
50 ms: {assume sample rate of 55 ms. }

55
50}:.043\/’ = . 0476V

The ladder resolution is . 12V /quanta; therefore, theoretically
a sample rate greater than 50 ms. would not seriously affect the ladders,
The recommended rule for sample rate, as previously mentioned, is 50 ms.
+5 ms.

{Refer to Figure 4 for a typical timing chart for programming
the ladders, Thisg chart was generated from Math Flow 4.)

-11-

B]

6.0 Gemini IGS Program Design

6.1 The Gemini Computer has an tnertial Guidance System (1GS) built by Honeywell Corporation that
interfaces with the Gemini Computer to provide Platform Gimbal Angles and Accelerometer Delta
Velocity increments from the Inertial Measuring Unit (IMU). The Gemini Computer uses the PRO
(Process Input or Output) instruction to input or output t/0 data into or from the accumulator location
specified by the operand address. The accumulator is cleared before loading if bit “A9”equals a “1”.

6.2 The Gimbal Angle readings by the Gemini Computer require a minimum of 5 ms delay between
each sampling. The maximum sample time for all three angles (pitch, roll, and yaw} is 30 ms.

The GIMBAL subroutine {left hand symbol in program listing) processes the three Gimbal angles,
The Input instructions and Output arguments for the 3 three angles are:

INPUT INSTRUCTION QUTPUT ARGUMENTS

PRO 36 PHBC, THBC, PSBC
PRO 46 EPY, EPR, EPP
PRC 56 DPHSC, DTHSC, DPSSC

The ACLMTI subroutine {left hand symbol in program listing} processes the three accelerometer
values. The Input instruction and its three output arguments are:

INPUT INSTRUCTION OUTPUT ARGUMENTS
PRO 45 FX, FY, FZ

6.3 One PRO 45 is used to read the velocity changes from all three axes of the platform electronics
into the accumulator location, and to zero the reference velocity for the next set of readings.

The time required to execute the Accelerometer subroutine is 20.02 ms.

All Gemini subroutines are located in Module 1 {called hard core). The Gimbal Angle subroutine
uses 138, 13 bit memory locations and the Accelerometer subroutine uses 135, 13 bit memory locations.

6.4 Figure 3, a simplified diagram showing the Gemini Computer and Inertial Measuring Unit, provides
information to assist the programmer in designing the IGS software and in developing and verifying
the Gimbal and Accelerometer subroutines.

-12-

7.0 1TCCS PUNCHED TAPES GENERATION

7.1 The TCCS punched tapes are mylar punched tapes containing
information which is used to check the contents of Gemini memory
throughout certain periods of testing prior to lift-off.

7.2 The generation of thesc tapes is shown by the Flow Chart in
Figure 2 and detail description is contained in IBM Report #64-547-002.

-13-

8.0 ATM/AGE PUNCH TAPE VERIFICATION PROCESS
AND MEMORY LOADER TAPES

8.1 The Gemini Computer/ATM System requires two types
of punched mylar tapes in order to load the Gemini memory and the ATM
tape. Namely:
1, Memory Loader Tapes
2. AGE/ATM Loader Tapes
8.2 The Memory Load Tapes and their respcctive functions are

tabulated below:

Memory Loader Tapes

Type Function
Module I
Load and Verify Load all 4096 39 bit Gemini words

(Syllable 2, 1, 0).

Verifies {(after load) all 4096 39 bit
Gemini words except those addresses
that have all 39 bits equal to zero.

Verify After Run Verifies (after execution) Syllable 2
and all instructions and constants in
Syllables 0, I which are unique to

Module I.
Module "N*' {where N is any
module assembled around
Module I)
Verify After Run Verifics all 4096 39 bit words that are

non-zcro, That is, it verifies all of
Module T and Module N memory locations
that are not variables, (Instructions and
constants. }

- k-

+

The AGE/ATM loader tapes contain Module "N' core map
information {constants and instructions) obtained from the assembler

output tape (first file).

The purposc of this list is to demonstrate that the cross
verification process which casures AGE/ATM tapes have heen punched
without crrors and that the data has been loaded corrvectly by the AGE/
ATM tape loader. See the verification block diagram in Figure 1 for this
process.

The steps required to go from the output of the asscmbler
for Module '"N'" to subsequent computer memory load involves a serics of
tape conversion and punching and is quite subject to crrors.

It is the purpose of this report to demonstrate that an '"end-to-
end! check is made such that complete confidence is gained in the resultant
ATM memory load and computer memory load.

Discussion of Flow Chart

Each block in the Flow Chart is described in terms of sequence
of events, block description and applicable documents.

See Table 6,

-15-

9,0 Gemini Programming Do's and Dont's

9.1 Do's

9.1.1 Assemblies

1. Use end card when editing an assembly.

2. Initialize all variables probably prior to usage.

3. Set up six mode pointer constants properly in each
Module "N'" Assembly.

4, Put EQU, SYN and Constants in common tables
(At end of assembly)

5. Rotate assembly tapes or a three cyclic bias in
order to recover in the event of a "bad' tape.

6. On an assembly from cards place one blank in the
beginning of card deck {no ''end' card)

7. Place parentheses around referenced HOP constants

(CLA (HOPC) or 8TO {HOPCQC))

9.1.2 Punch Taves

1. Verify all AGE/ATM tapes
2. Calibrate all TCCS tapes sent to Cape

3. Verify all memory loader tapes with CCTS master copy

9.1.3 _Simulation
1, Always use latest assembly

- 2., Use symbolic setup where necessary

-16-

9.2

9.2.1

Don‘gj_s_

As sembliei_

1.

Do not put an '""End" card at the end of the source

deck when doing an assembly from cards.

Do not time share DCS or MDIU variables

Do not redefine Module [constants in Module "N
assemblies,

Do not define any constant to zcero other than "KZERO"
Do not use set instructions unless they are bracketed
by comments cards of all asterisks.

Don't use an ORB'' operation unless it is preceeded

by a TRA or HOP instruction.

17 -

TABLE 1

Module I Time Sharing Candidates

Subroutine or

Sector Math Flow Symbols Variable Mode Usage
17 ADRS _ADRS ATM Read
17 CKSUM CKSUM P/L
17 b twp DTWND ATM Read
17 DVxr - DVXT ATM Read
17 ANvyr DVYT ATM Read
17 51,21 HE5IPZ21 {Mod-Addr) ATM Read
17 H51.22 FI51F22 (Mod-Addr) ATM Read
17 A 1) H7AP1] (Mod-Addr) 1/ L
17 H7A. 12 H7AP12 (Mod-Addr) P/

17 LCAT | LCATI ATM Read
17 LCAT 2 LCAT?2 ATM Read
17 L.CAT 3 LCATS3 ATM Read
17 LCAT 4 LCAT4 ATM Read
17 LCAT 5 LCATS ATM Read
17 LCAT 6 LCAT6 ATM Read
17 LCAT 7 LCATY A'TM Kead
17 PGW PGW ATM Tiead
17 L TD ATM Read
17 WORD WORD ATM Read
15 +swnp TSWND ATM Read

14 Atpy DTEN ATM Read
14 Atpwpn DTRWD ATM Read
14 LCATD?2 LCATD?2 ATM Rend

14 TPN TPN ATM Read
14 'SRWD TSRWD ATM Read

- R

S (Cont'd) Page 2

Module L 'Time Shi e Corelidates

Sulsroutine ur

suctor Malh Mow Symbols Yariable Mode Usiape
13 DATA T DATA ATM Read
13 DBLK DBLK (i1 locations) ATM Read
i3 PAR] PAR1 ATM Read
13 PAR2 PAR?2 ATM Read
i3 PAR3 PAR3 ATM Read
13 PAR4 PAR4 ATM Read
12 TDD TDD ATM Read
06 Cpi1sl Cpisl P/ L
06 Cpi1s2 Cpr182 P/L
06 Cpigs Cp183 ' P/L
06 H7AP1 H7API P/L
06 H7APIC H7APIC P/L
06 SBILKIL-6 SBBLK 1-6 - ATM Read
06 H7API11 H7API1 ATM Read
06 H7AP12 H7AP12 ATM Read

~ {6~

TABLE 2

DATA (26 BIT) BREAKDOWN OF MODULE I

TYPE OF DATA 26 BIT LOCATIONS

K's (Constants) S e e b e b e e e e e e

L .- LI '} 231

HOPC (HOP Conﬂtantﬂ) L .l . » L]] L L I' L - - . L } L L] * L] . 143

VARIABLES" . .

L L T S

L] - . - . 468

TOTAL 842

NOTE: The variables count includes not only variables used by

Module I but also variables used by the other Modules.

~ O

TABLE 3

INSTRUCTION BREAKDOWN OF MODULE I

SUBROUTINE

Accelerometer , , .,

Age ,,

" Arctan , ., , ., ., ..
ATM Read, .,

Blink , ., ., ..

Bootstrap

Cloek . . .+ + . .,
" .D.A.S LI

DAS Polinters « « + . . s w

DCsS.

DCS Extended Pointers

Error Angle . .

.

Framechange 1 and 2. .

Gimbal Angle . .

! GO“‘NO GO - a'.o .- LI

S IJO L L.
INBOOT.

" MDIU Polnters . . .

.

*« 4 v 2 ¢ & »

»

.
.
-
LI
.
.

-

(MFw7)

. - LI N DT e | * + L]
. » - - L - L] L3
L] L] [L] L] - L] L] L
- - - . R - L]] »
- L] » - - * L] L] £l
* e . . N . . .
L] » .' L] L] -
* L] - . + ® 5 2 ¥ e &
L] L] L) - + L] L]
L] L] [- L - L] 4 & & ® » @
. L T)
& » [] -
L] - . L] - [] .
- . . L] L] .. -
- * L - L] '
L - »
L] - * » ” . - .
L] * 2 = e 5 8 L] *
- L] L L] - - L] L]
* * L] L] . L] L]
- e r———
..... . * . - . - . * *
+ * ¥ 2 8 & L]

MDIU Scaling Polnters
- MDKSTD, MDRGET, DCSSTQ

Mode Switch | |
Power On , , . ,

Prelaunch, , . , ,

Resget , , , . ..

RESTOR ., ..,

~Root S8um ., , ,,

Square Root., , .,

Sin Cos , , ., ., .
TRS ;... ..
- TRSENT -, , . .
Zero IVI |, |, 7.

« *+ » w ¥

« »

*

L] L]
. -
L] -
. .
L -
+

1] V .
.

. s
LI]

*

. »
L I

. .

. « 2
v e e s
“ s 42 v s

*

.

LR
.
. .
*.
. . .
s & v .

LI 3 . L

.

Total Ix;structions
. SYL 2

SYLO&I1 .

13 BIT LOCATIONS

TARBLE 4

GEMINI SUBROQUTINE INPUT AND OUTPUT ARGUMENTS

SUBROUTINE INPUT OUTPUT LHS
ROOTSUM CP15, CP16 I cP20 ROTSUM
SNUARE ROOT AILLPHA 1, ALPHA 2 ALPHA 3 SQROOT
ARC TANGENT GAMMA 1, GAMMA 2 TANGAM ATANGMN
CLOCK CLD 30 » DTC, T, TDAS CLOCK

PRO 55,
SIN COS RHO SINRHO, COSRFHO SIN COS
GIMBAL PRO 36 PHBC, THBC, PSBC GIMBAL

PRO 46 EPY, EPR, EPP

PRO 56 DPHSC, DTHSC, DPSSC
ERROR DPHSC, DTHSC, DPSSC | DPHBO, DTHBO, DPSBO | ERROR
LIMIT CP190 CP190 LIMIT
ACCELEROMETER PRO 45 FX, FY, FZ ACLMTI
IVI DRIVE DVXB, DVYB, DVZB IVI HARDWARE IVI OU'T

DISPLAY
L.OG ETA LOG ETA LOG
TRS LC2W (+) COMP TO TRS TRS
(STORE)
{-} TRS TO COMP
LGC2X +,0 TX CP187

+,#0 TR
- TE

~ Y~

Sibrontine
SRR

- —

Acetelerometer

Aoretopn

Clack

IDAS

DAE

PCAs

_DCs

DCSSTO ..

DBCSSTO

DPCESSTO

Errom Augle
FROCHT
TRCLEL
Gimbal Angle
Go - No Go

IBAUD

o

11 DCsy

TABLE 5 ’ ?

GIMINI OPERATIONAL PROGRAM
MF -t

Subroutine Fxecution Ingtruction Count
(Counts are maxirmum unless specified otherwiga)

Time

143 20,02
872 B 114w
49 b 8o
18 (Request, no 2.92
gync)

24 {(Reovest. and 4%[a
gync)

18 (Shortes! path) 2. 52

24 (Longest path - 3,38

Adrv. 7 28y
749 (Adn."-f_-m ©10. 748
H
53 (Adv. & 21) L7 42
(Adv > 21) T84
11 S e, 38 h ‘.,'.l%
150 | 21.00 ‘

196 C 27, 44 :

- -\\ s e ey . !' vt b maamy
5 (l}f 5)) '3‘1‘ S.Jin)itl 8‘ 3'9]t:flnn! 1 8“ j“) !J tli lil‘\i.tl Lrl

e wir e d ot b

.mutl] E,.mn} & &

zLerf] (Mot s

4
e i s vt

o
7p Cimbabl 3

e bbbt et s T

t}
Il ,'m ot “

- iy =

P e L RN o n < gty

(- e e atEr

iy
'}

9 {1/0.

PRSI —————

Table 5 c:ontinv.ua-c':‘1
i ‘-. LN TR

Ao 10

BANEEE]

faon

Jtoot Sum

Shift

PR Y S W

Sguare Root

This

TROENT

nos

NOTI:

no DCS, DAY or

T

vl hreceods

e by A g trm e e

Cootiagl

— i ——

! e e
LT IS P B
| L :

v PRI

1R 2.ne
93 13,02

ing LIS B

24ild {n-1) ‘

Number of iterations

NDTU entries,

Nuthliers 1nhside tire blocks indicate instructions executed witl

TABLE 6

SEQUENCE
OF EVENTS

BL.OCK
DESCRIPTION

APPLICABLE
DOCUMENTS

The Module "N" edit cards or source
deck ias generated by the programmer.

The Module I program {(hardcore)
placed on magnetic tape (9 files) is fed,
along with Module "N" edit cards or
gource deck, into the 7090 Gemini
Asgsembler,

The 7090 Assembler bullda a Gemini
Core Map by assigning address to
Module '"N' instructions, constants
and variables that have not previously
been assigned to Module I,

The output of assembly process is a
magnetic tape that contalns 9 files of.
information. The first flle contalins
a Gemini Core Map configuration for
Module "N'" only. See documents for
detalls of the remalning files,

The Module '"N" Core Map is con-~
verted from Gemini format to ATM

"format by a 7090 convert program.

See: Gemini Computer/ATM-Pro-
gram Module assignment and ATM
tape layout specification (IBM No.
6449873) for details on ATM word
order,

The output of the 7090 convert program
ig a magnetic tape which contalns one
file of Information, this tape is used to
generate ATM/AGE punch tapes and as
an lnput for the ATM Simulator.

IBM 7090 DPS
Gemini Assembly
and punch pro-
gram. IBM

No., 66=538-01

See 1,

See 1.,

See 1.

Currently being
drafted.by Homer
Middleton (538,
101-1)

See 5.

Table 6 continued

SEQUENCE BLOCK APPLICABLE
OF EVENTS DESCRIPTION DOCUMENTS
7 The purpose of the 7090 ATM Simu- The Gemini
lator is to execute the ATM read pro- Simulator ref-
gram contained in the Module I asgsembly|erence manual
8. The ATM Simulator forces the ATM |IBM No, 64-
read program (auto and manual) to ex~ {542-011A.
tract ATM words from tape 6 and buildsal
merged core map 9 exactly as the Gemin] ATM Simula-
computer reads the ATM tape 23 In step |tor reference
26. manual IBM
No. 65-538-03,
8 Tape 8 and 2 are identical. It contalns [See 1.
the Module 1 assembly information.
9 The output of the ATM Simulator is a See 7.
merged core map of Modulés I and ""N',
(The ATM read variables are non-zero
because of executing this program.)
9A The 7090 ATM Simulator merge pro- See 7.
gram instantaneously superimposes
Module "N'" Core Map. {(The ATM read
variables are zero because this program
is not executed.)
9B The output of the ATM Simulator merge [See 7,
program is the resultant core map of
Module I and "N", {7090 word bits 34
and 35 are zeroed out and as a result the
TCCS program must use another merge
program for a dump O function), It is
worth noting that the simulator puts a bit
35 in the simulator stop location specifiefl
on each CON card.
10 The purpose of the 7090 Core Map com= | None

pare program is to identify any location
in the Gemini memory that is different
between tape 9B and 9,

-

Table 6 continued

SEQUENCE BLOCK APPLICABLE
OF EVENTS DESCRIFPTION DOCUMENTS

11 The compare is made manually by None
masking out ATM read variables and
slmulator correction cards (1f any
exists). Any resultant other than zero
would be a "NO'" and step 13 would be
followed. A complete compare after
masking would indicate a "YES" and the
next step would be 12,

12 The conversion, merging and reading None
has been successfully accomplished,

Continue to step 14,

13 An error has been made. Identify the |None
source and repeat the necessary steps,

14 The 1401/1012 punch program {A) is See 1. 1401/1012
used to generate Module ""N" verify program for punch
after run memory loader tapes. The ing Gemini Comput.
1401 program for steps 14 and 24 are tapes. Job #5966,
identical but the data cards are differ-
ent,

15 The Module '"N" verify after run tape See 1,
verifies all instructions and constants
assoclated with module "N" and module
I. Variable locations are skipped,

16 The 1401/1012 punch program (B) is See 5, 1401/1012
used to generate Module "N" AGE/ATM program for punche
punch tapes for the AGE/ATM Loader ing Geminl AGE/
22, ATM Tapes. Job

#7420,

17 The Module "N" AGE/ATM Loader Tape |See 16.
contains Instructions and constants for
Module "N'", Variable and unused loca-
tlons are not punched on this tape,

18 The 1401 compare program reads the See 6,

AGE/ATM Module "N" punch tape inw
formation from the 1012 machine and
compares this data with Module N
magnetic tape 6. It 1z worth noting that
the only Information punched on the
AGE/ATM tape that is not on convert
magnetlc tape 1s the following:

R

Table 6 continued

SEQUENCE
QF EVENTS

BLOCK
DESCRIPTION

AFPPLICABLE
DOCUMENTS

18
continued

19

21

22

23

1. AGE/ATM Loader three bit code
in frame eleven of the last tape
position word,

2. The 13 frames of data {good parity)

at the end of each punched AGE/ATM

Tape.
The reason for not comparing this infor-
mation is because these punches are gene
ated by the 1401/1012 punch program and
not the 7090 convert program.
tion to these potential problem areas are
always checked by the followlng means:
I. The 1401 punch program prints on
line the type of three bit code and
the tape positlion word that this code
was punched in at the time of punch-
ing on the 1012,
2. The good parity data is checked by
counting these frames at the end of
the punched AGE/ATM Tape.

If the ATM convert magnetic tape and
AGE/ATM punched tape agree, then the
exlt {s to step 20.

The punching has been performed cor-
rectly and continue to step 22.

An error has been made, Identify the
source and repeat the necessary steps.

" The AGE/ATM punch tapes are loaded

on the ATM tape by this loader.

This tape contains the flight modules.
The information content s instructions
and constants only. Variables and un-
used locations are not allowed,

“19~

The solu+

None

None

Gemini Com-
puter/ATM
program module
pssignment and
ATM tape layout
specification,
IBM #6449873.

See 22,

Table 6 continuoed

SEQUENCE
OF EVENTS

BLOCK
DESCRIPTION

APPLICABLE
DOCUMENTS

24

25

26

27

28

29

30

The 1401/1012 punch program (A) is
used to generate a module I memory
load and verify tape for step 25.

The Module I load and verify memory
loader tape contains all 4096 - 39 bit
Gemini words (includes all variables
and unused locations),

The Geminl Computer memory s first
loaded and verified with Module I via
the memory loader. The Module ""N"
is next loaded into Gemini memory by
executing the read program {auto or
manual). Upon completion of loading
the Gemini memory with Modules I
and "N'" transfer is to step 27.

The memory loader is used to intero-
gate the Gemini Computer memory in
order to see if it contains the correct
assembly information. {Module I and "N')

If the comparison is established "YES",
then exit to step 29. If an error is
detected, transfer is to the "NO" exit
step 30. '

The Gemini Computer memory is
loaded with the correct Module I and
"N'" information. TheAGE/ATM loader,
ATM unit and Module I ATM read pro-
gram have all worked properly.

An error has been made. Identify the
source and repeat the necessary steps.

TR

See 1) 14.

See 1, 14.

None

None

None

None

None

wiBorg Aplas p peq,
ade], j12Auc’ peq,
atoy payound
e dn paxoid 1o
poddoxqg 2T0T/10¥1.
Asuapunpay sdeg,
SYOYWHH A THISSOd

IEadaX pue
Anq puyz

id

‘uolielioyul Alquasse radoad
sutejuod Asowsw yunuarn pue ‘Apzadoad

Araadoaduwy Bupaopy 1speReT WIV/AOV.

tuq ede], W1V peEd,
adey uny 189y AJI8A 4N, SINPOW PR,

Ayjradoxduwiy Supiaoym 19proT Azowrapy,
Agzsdorduy Bupjiom 1syndwon juman,

SSHOYHE ATHISSOd

sdey
mwdfog Alquisssy peq,
wmraBarg 139au00 pEY,
Asuepunpsy adey,

) sinpadolg
pae] [oxmoD Q6OL,
Aneuagg adey,,
sEetesy ele(] I01B(NWIG,
SHOYYH IFTdISS0Od

_ jeadaa pue 8n

q_puis

[

o

060L

deur 8100

W.LY 060L

1 $ENO1g

\ 43

papeo] usaq gey wesdoad , N, 2i0popw (0
1eadaa pue 3ng pujl 3
‘Ajradoad
PINI0M Z2T01/T0%T 243 puv spiom
WLV PIIIATOD UL 1227100 913
supejued sdel yaungd WIV/MOV a4l (g
~A113dord Sujuoyiouny sy "“E“. ~
I 3Inpo uj wezdord peay WLV YL fromow
‘UG IV IOJU IDIIIOD FEy -
, adey speuBew IV partsavod eqr (v
* Iapeo] asdey A
! WLIV/EDV WILY
1 22 £7
adel uuy
axedwod X233y Afjxa
adey aapeog uNy, *Inpom
WLV/2DV
niNy 3npo
L1 }
. | ki <
Z101 2101 . v
yound yound uod .)
91 10%1 10¥1 1091 f
i ¥ .
1Y L ety ¥
¥ 714
-H.t. Ll -
snpotw uj jndine 9 5w
Aquiass® ||N,, mﬁn—ﬂuvuma\
npoty apnpow
¥'L2TT EITY :
“; . m
Iojeyhuals % o1y 2d=3
WLV 3IBAUOD II[QUIISEE mdino
- Alquzassge 060L 060L 060L Aquesee
: I aTnpow) 7 1mpot
Z
8 14 31y y 10 13p@
IDIEIN N)
Joje[nUTs ue
sxedwon : 4 21y Irnpowr

weadeyy yso1g

UORPEdFHPA 2del qound IOV/WIV

f)ocummtt

o e
—

ﬂr\% Uaed(fu‘

‘

‘-_-lf.‘
-.,.1. !’ ”’- ;.

i F’:‘lniout

Updnﬂnn

Mognrtic

> w

e—— e -

c

. 1s
e
Y .
N 1}
.v £ -
i
)
| I
. '
It
o s
P I
¢ Lot +
Y ",
. i
s \ A ;
\ [
VL
1 Y
o
15
. i,
w ‘.‘ .
RNV
.
4 L .
[.
. 1 ‘ .
1 ';'
L.
i K
| e
TR
R
Pt [

ON AND VEP

KiS PROGRAM - DES

KISSION
HF
She -

ol vE

E:

MATH

PROGRAM

UFLOW

- FLOW]

SYSTId
MATH

r
-y

o

CLINANCE!

e

)r':f ”. R
wh

[
A

W-ARSUND TIME TC THIS

2

- XY

5
QF A FLIGHT

oH CGRE

-
TO THX RELEASE

sy

PO™

.' \ '?'.}
S

(fia

-

“TAPT s_rmn. o

=

SN
“'..'! 55“}'

T e

-l-

!‘l.“

]\\ .\}.,. pzﬂ‘ "

|':f‘|,?m[‘}j‘-‘

1
INNT

tE .
'
v
v
'
T B
.
t
f .
LT |
. B
1
Yoo
ey
l. .|
v £
Y .
.
[
et
¥

L

Sml ead RV

W

- ¥ o080 o
o SNILOTY ¥3QAWT - ONNL 1
SaU3 Wik mmaoi w0 Y L

Lk | ._.‘ﬁar&,@.
mzﬁ.é _gl | .mzmﬁli Tl asfl Lo .wa.uz&.m-

sk A (e sV LT

ik
P .M

mjnz % ._ . —

ha

T ewue - INTASE TR

T ST) . ni.ﬂ.w Ii Tu a£m.ﬁ|& T| . wf.u.ﬂlv_. Tl .N.ww.“ﬂwu

_a.@gﬁl@ ERED

o
X o,& | 5@& s

& HE S
L A OY¥d

. | (rew) 3w QS
= vy KD

AR QMR T

TR

gl L Sl

