'5@7”” G’Ay" Rcﬁ'trtwcc Manul fr He F4ov

CONTROL DATA
7600 COMPUTER SYSTEM

Information presented in this edition is preliminary
and subject to change. Any corrections necessitated
by design changes and/or product improvement will
be handled by standard manual revision procedures,
Errors and suggestions should be communicated to
Development Division, Technical Publications Dept,

PRELIMINARY

REFERENCE MANUAL
)’))e$+ l'F "')\l ln"?avmh'}“"\ 'R ’*‘L-.\ R wos avs.dable Cavly 1n 156

T“e Jbeoe Pr.rh *7?‘ chackovy ksaw. avovnd mid 1409
The Swd’ 60> SL-?YQB t/'/‘q :

7-”'“ a"’“hed")’h'b“"'ﬂ “?""b"s ’°3" disgrews & wice "5"5) a3 used Ly Hhe @940n £ees
when checkig ot the prabtype, softunce paapie, fle €E% durdy Fhu enly duys oF
+he 6 o00.

Ths masdel s shl vsed 4dy by didvels w cDE’S T600 seF b svpport depavt mant,

ko

"FOREWORD

7The ideas and designs set forth in this Control Data 7600
‘:Preliminary Reference Manpal are the property of Control Data
Corporation anc¢ are not to be disseminated, distributed, or conveyed
‘to third persons without the express written permission of the

‘Control Data Corporation Patent Department.

o r R ey o . SN — e e w .

SRS Y s

e~

"REV. 4

System parameterscececeoncccne esencss sececcervesaas
System communicationeccee0. Cersecsvecnssescens sevee
Operating system ..ceeossococcccecs ereccessessecencenves .
System MONIitOTceovevovonasccans 4esescscesasscsnan FON
Object programceeese teeaenesccanevns ceseens seceenees

Central processing unit O sescacea sesace
CPU cOre memoOIY ...ocosecsoon tesecseereasscesssncsnny veeoaa
Computation sectionecceeasee sesecenne csecssssesancans
Instruction word stackcc000 sesvecsans sesescessareas
X registerscevvcevccsasconans T
A registersceecesceccctoscnaccncoses sacacsses veosssoa
B registersccecceevae sesesnsee cesveensen seasacecanacae
Functional units ceesens sesesesosestssesancssans
Binary arithmeticc.... erescasessecses saseseenes
Floating point arithmetic sesessssesnns seccances
Integer multiplication teasesssssneesses ceccaseca
Integer divisioncc0v000ne secscsne sesresscesascoaca
CPU instruction format ceesas cesseeccons seseasae
Storage field protectionccc00000 cestecennns cieessans
Program branching seeeancasuesevenns sacasecnen
Exchange jumpccecc0ceesee sesesses scesecsvses sesseennee
Program breakpoint sosscere vereene cevocosensens
Error exitseieecececsncss R
CPU input-output sectioncc00cs vetecssesasacsrenanne
Real time clockv0cceuccnn sevesas tresracsseraacacasns
Real time interruptceveeeee seccocs tsecscserevenns .
External interruptcice00000cae cesres teesesecses .o

System dead Startcececcvessccccnsnonns Gertesecssasenenaa

System operationci0000000 secacas sssessecssccnn vesvaces

114

“TABLE OF CONTENTS

PART : SYSTEM DESCRIPTION

Introductionccccecseccesscscocssses ceseencens seescessannn

[
]

VTTNNTTTYY
oo pppLHO

=
«
]
fre
)
o
o
bl
<
—
v
<

. REV. 8

'PART 2: CPU DESCRIPTION

Introductionseveveccecnns ceeseeen ereasacenens cesessoses
Control flag namescveosevecen tessessacscs cesaasns oo
Data register namescceccooveccs seesssevseeenens oo
Control condition names eesreenessessrressnrses

Instruction stackecveevesocrssscasosssnsoscsasas coeenas

Instruction issue P N resresseesces

Boolean unitc0c00 raeseseses s esessaccane seassesearsens

Shift unit veeserseaanes ceseseversseas sesensvsen .

Normalize unitc.cieecvroccevsvesarecsosscsssnsansssenoss

Long add unit S)

Floating add unitcc0ecvveeercens cevessns eteesesssesran

Floating multiply unit s cetesssssreseraeeasnes

Floating divide unit ceseesecensons vesasssennecan

Population count uniteeecvncccrnnrenconecncrcecns coes

Increment unit coeresseacencns ecsseseessasensnne voen

Branch instructionsc.ccecvecnccccvecse ceessesssesanan .

Exchange sequence casersace wesecesssrensaseserravanes .o

Program status register ceevnsesecnssrsassonses

X registers ...vececescescacens teseavecsesrsensescnacssensns

B registers ...ceceesoncvscces cesees sesscessssssassenaenroes

A registerscioeecessncccnnes vesecessscsssenssesnasarans

Supporting Tregistersocceceene ctcecsscesaneraneoan coes
RAS register R E LR R R
‘FLS regiSterceeesecswoonvscns cssececncsencnsessasse

- RAL register sseeresssencees cesssssecens e sacssssn
FLL register ...cceoeeccces ceesccsane cecseesace secccessass
NEA register teecsesececessesssacavoceosrosons e s
EEA register ..cccvveovsncvccescssccns ceceserenavesssenas
BPA registercceevvenncase evenesestscsssesarasvisncna

Small COTE MEMOTY .vucsvecsoccvcssovessnnscsnsascccscanscsccs

Storage address stack0000 Gesessesniennesstsssesnens

SCM bankscc00ca0ns heeseeserecsssersraancerssaasea sy

Storage word stackn esecsessiasssssesensannts .

SCM data distributionecceecveaves seansses resscsscncns

SCM destination control unitc.cceccorosovscecccanccrans

Exchange destination control unlteevieicecencnccncnns

Input/Qutput sectioncceeveen.. cacorsassensssecene cave

Channel input control unit ceesacees ceseene ceroes .

Input data merge Network ceesnesunn chessccssnes

iv

"REV. 4

PART 3: CPU INSTRUCTIONS

Introduction cerevassoacee secccssssnssacasenes eeeeses 3-0
00xxx Error exiteececececcocccnas - 12
0100x xxxxX RetuIn jUMP ..evsevscscvonnnans teesvenneesnses 32
O0lljx xxxxx Block copy LCM to SCM crecseanae sesesas 3-9
012jx xxxxx Block copy SCM to LCMcceevenene cessans 3-17
013jx xxxxx Exchange exit (exit mode flag set) .oeeeerneee 3-25
01300 Exchange exit (exit mode flag cleared) 3=36
014jk Read LCM creccasanane vecessssccsssans teaean 3-40
015jk Write LCMciiveecvecrcnnnnrsns seecacssoacsnass 3-44
0160k Reset input buffer ecersesasrsraenses 3-47
016jk Read channel input status (j NONZEYO) ..evseesesoess 330
0170k Reset output buffer cesesenes ceeenes 3-52
017jk Read channel output status (j nonzero) 3-56
02i0x xxxxx Jump to B+ K censns ceieveeens eeee. 3-58
030jx xxxxx Branch on X zero cecesscnseroaserosns 3-64
031jx xxxxx Branch on X nonzerooc000. ceeesrasess 370
032jx xoxxx Branch on X positive cevesesssaserenes 3-71
033jx xxxxx Branch on X negative vessesessosanaan . 3-72
034jx xxxxx Branch on X in rangeceeoecennecceen . 3-73
035jx xxxxx Branch on X not in rangecce0e.n cees 3-74
036jx xxxxx Branch on X definitecccvecancene eeee 3-75
037jx xxxxx Branch on X indefinitec0c.0nen eeses 3-76
04ijx xxxxx Branch on B .EQ. B Cheevesesaenaaes 3-77
05ijx xxxxx Branch on B .NE. B ...ivceerecncnccnncnncnnans 3-84
06ijx xxxxx Branch on B ,GE. B i.veeeccverccnvrocncccnns .. 3-85
071jx xxxxx Branch on B .LT. Bveuivvvneninoncrcecanen. 3-86
10ij0 COPY svevcnves cessesecsnsacs cestoesa cesasseesssnees . 3-87
1lijk Logical productces cacsrescans veeesssssesss 3-89
12ijk Logical sumcveecececceacce tesseesssevessasscess 391
13ijk Logical difference vescsescassoscencene 3-93
14i0k Copy complement seseesvosessscracsaness 3-95
15ijk Logical product with complementc.occccnenvnn 3-97
16ijk Logical sum with complement sessssesns 3-99
17ijk Logical difference with complementccec0ncees 3-101
20ijk Left shift X by jkvceeveeen teecessrassrascassss 3-103
21ijk Right shift X by jk ceeesascssnsassesses 3-105
221jk Left shift X by Bcccvennes seessessescans eeeees 3-107
231k Right shift X by B Ceeneeeeaaes veeeereess 3-110
241jk Normalize X to X, B ceseccssnsens eessevesss 3-113
254}k Round normalize X to X, Bcvucvennn cesecnncoanns 3-117
261jk Unpack X to X, B searosens vesesesssssessss 3-121
271jk Pack X, Bto X - 1 v

=

lASL-AECOfFICIAq

30ijk Floating sumcccceveaens Cesessvesenassassens - 3-127

31ijk Floating difference ceserveseves tesaeenn 3-131
32ijk Floating double precision sumececoavusnncnes 3-135
331jk Floating double precision difference eees 3-140
34ijk Round floating sum .,......... scassssaces seascomnsss 3-145
35ijk Round floating difference sesessres ceereoans 3-151
36ijk Integer sum ..,....... Creresseesesene ceseneen ceeunen 3-157
37ijk Integer difference et esacssrentonans . 3-159
40ijk Floating product ceseenns csecereans tesserenes 3-161
41ijk Round floating product cecereassanne 3-165
42ijk Floating double precision product ee.. 3-168
43ijk Form mask jkc0vuvereccaanns e ssesecsasnnonns 3-172
44ijk Floating dividevvvvvnevnnnnns tressatecessases 3-174
45ijk Round floating divide tesessesesnseenes 3-178
46000 PaSS ..uessssveceesncencossoraossssane ceesssesesenen 3-181
47i0k Population COUNL ...ceevevererenarascrcccansasosnns 3-182
50ijx xxxxx Increment A+ K to A Ceststecansasses 3-184
S51ijx xxxxx Increment B+ K to A 3-188
52ijx xxxxx Increment X + K to Aiovvninnnennnnnnnnen 3-192
53ijk Increment X+ B to A seesesiersesrane eees 3-196
54ijk Increment A+ B to A ctecssvseaviassstesans .. 3-200
$5ijk Increment A - B to A ceeescssesrrernsannns eeees 3-204
56ijk Increment B+ B to A Ceeessnsenne veesee 3-205
57ijk Increment B - B to A eesesesnsssssasenecnas 3-209
60ijx xxxxx Increment A+ K to B eeess 3-210
6lijx xxxxx Increment B+ K to B ..vciveveveccncenn. veess 3-212
62ijx xxxxx Increment X + K to B serreaens sevenses . 3-213
63ijk Increment X + B to B ..i.ivvivunnnnn tecoesrecsnassons 3-214
64ijk Increment A+ B to B sesesssersessssenesens . 3-216
65ijk Increment A - Bto B0u00 cevsrssscssasensen 3-217
66ijk Increment B+ Bto B cesocarecsnconsonas 3-218
67ijk Increment B - Bto Bce0vvvuunsn cereaccsareas 3-219
70ijx xxxxx Increment .. + Kto X cessececaranans 3-220
71ijx xxxxx Increment B+ K to X ...ceeverenesens veanrens 3-221
72ijx xxxxx Increment X + K to X cesarresanes crseeeass 3-222
73ijk Increment X + B to X ...veviunccnnssvccnnnaccessane 3-223
74ijk Increment A+ B to Xcceinnnnn cessssceasecasens 3-224
75ijk Increment A -~ B to X vicvasscasune sereseann 3-225
76ijk Increment B+ B to X ceetescarnsrsosaseane 3-226
vi

REV. 4

'REV. 13

'PART 4. PPU DESCRIPTION

Introduction ,....ee.. P
Operand Arithmetic eescnse sesesss Gsssessescosecnsnnas
A TegiSLeY .ieeessercccscsasncene S
Shift count register (sk) arecanes ceeseassessens
Address ArithmeticC ..eeecesscocsososvesscsnossnsosssassnses
Program address register (P) .iceseesesscssnssancansosss
Operand address register (Q) .v.ceveeses cevseseserscanes
Increment adder NetwoTrKk ,.u.svecccsaseccsscvcrsssscacnas
Address adder NetwWork ..ceeecececersescccns sesesssassass

Internal StOTA8e .seeoesevscscensescaansnsasssssosscsssssasnssne
Bank sequence cOntYOl ...iceivecocsansosssescssassoscnsss
Bank busy flag ..eececcececcscccasaconcoconcssssovennoans
S TegBlSter .iieerecevssrososessesscsosassscsssasssssonene
PPU storage MOdUleS ...iveescsvccccocscescnssossccnconcs
Parity generation networkceesssevseccccsccsccanncs
Z TegiSteT suevecenvsovancsnsesacsancssacsasesosssssocsasnsons
X regiSter coeeeeseecccvesssocossoccsnnsssnnassasnsnnoss
Parity detection network casscesssescsns secesssce

Write.-Data Selection ,.ceveeeseeeccscacssvascscasaasscnnsss
Write data mode flags ...eeevevecsssesccnsoe ceesncssnnens

Instruction Translation ...uevesceceoeceoscecesvsvosaccosonsas
D G =Y - 1Y =
kK regiSterveeeeeceeacess ceeseas ceeserasetseceracaae
d TeBISLET seeeucvsnsssscnsassonesascessscasssssscsssasess
Instruction translation NEtWOTK ,.eeeesocccccovcoscooses

Instruction Timing ..eeseeseeesscasccssosssccsscsoscsoascssns
Go registers flag (GRF)cevecooaccscooscosncssncosss
Main timing chain (.eviereetveccverasncocnrecssscsnccnas
Jump delay chain ,..iueeeenssecevescsoasoscnnassassnannsns
Jump delay flag (JDF) cesssesccencas ceevessases .o

Input Channels ® 6 6 & 00 OB 00000 E G Ao € 0 9 5 0 00 B8O N I NSNS
Input channel word flag LU L I B B R B BRI B BN BRI B B B B B AR Y
Input channel record flagc.ovevveovscncncnconcanens

Input channel resume flag seanssscesssnsssonssaas
IWF synchronizing network ..eeeeeceevscocscosscsvonnnans
IRF synchronizing network t.eeeecesccsceccescosassonsasnsa
Input word flag (IWF) tuiueeeaoesnccsoancnnanssoscscoocns
Input record flag (IRF) .eveeeecccovsconsasnccencasscnans
Channel data selection NetWOTKevenncconsessscocsons
Output Channels ...ieeeerevecresrsreoscosessssannnan seesese
Output channel word flag ...eeeeeessveecosscacsecnces cees
Output channel record flag ...ieieesessveosencscncncanas
OWF synchronizing network Cessssatsecsesesceannosna
ORF synchronizing networkceeeesecssccccscasconcs

vii

LASL-AEC - OFFICI

REV. 13

Output word flag (OWF) ..euiiveovecvcceconcnnarasccvecany
Output record flag (ORF) ceccseososastoasanees
Output data selection networkccececevorcccocccens
Channel output regisSters ..e.ieecesccsscsscrccssssancesns
Full Duplex Communicationceceescsvecoesersccacocccnons
Word flag .eeveccesnncns cesena vecssesssvesssasasencescrue
Record flag .e.cecevevesessvoncscvsessancsscncosasscoccene
RESUME +voveeovssoccoosssssssssssscsssncasocssassvsosssvsoccocs
Maximum cable length ,...ccvivereseccocrsasscscccesscnans
MCU Control Cable ..ieeesccocvcnccsscsvscesssscscsssrsnansone
Dead StATL ,eveoveesescscoosssvessacsosssvsnsacnoenscvcae
Dead dUMD .vessvsvcosvscssssassrasssscscsvecssrsoccernoe
Parity error registereeceseccccsrancccocrocenccens
PYOEYam ETYOT ,sesevreesessssoscccsossscorsrneassoscossssos

.
LR

viii

PR SR S S
]

1
munmupsoSppbs s
— =0 m>a>a:c~c~a~u»f:§:§:

-F*D-DJ‘-‘&‘J-\J-\-I-\

'REV. I3

PART 5. PPU INSTRUCTIONS

IntrOdUCtiQn P e e T R R RN N RN NN R RN RN R AR RN AR LSRN

TermiHOIOgy 0P S S S C AP OSSP OLIPENEPP IS RLCFOPOOBEEEOONONSINROISIIIOITPTDS

00XX
0100
01XX
0200
02XX
03xX
04XX
05XX
06XX
07XX
10XX
11XX
12XX
13XX
14XX
15XX
16XX
17XX
20XX
21XX
22XX
23XX
24XX
25XX
26XX
27XX
30XX
31XX
32XX
33XX
34XX
35XX
36XX
37XX
40XX
41XX
42XX
43XX
44XX
45XX
46XX
47XX

ETXYOr StOP vvveesssccsscosoansacascssscosonascsssanns

XXXX Long jump tom

....... FREERE R I IR NI B]

XXXX Long jump tom + (d) .seeececesecosscvacacne ceses
XXXX Return jump tO M .eceencccscossoncsccsosncososness
XXX Return jump to m + (d) civeevcevevesosannns caene
Unconditional jump d .seeececescssoososccosscsccaanss .o

zero ijpd '...................‘.........'.....'.'..
Nonzero juUMp d seeecscesvessveacasosssssossnsssesscnnes
Positive jump d 5 ¢0 0P EEEV0POIECEITEIOVIOIBSEORIOSIIOGEOILOROGBTPRIROLIEGEGETSTES

Negative jump d ssseececessccssoscsscsacssoccccscccas .
Shiftd .’l-‘..........‘.....................‘
Logical difference d ...cceveecnsescsncssesccccccnnns

Logical product d .eeaececessecocsesssssscssososannns
Selective Cleard 'TEEREEREEEENX NI I NI N BN NI S R R R B L

Loal d seceocsacrsssnveces e

20 e8P A0 R EPOOLSIIERIRAESIOSEUVSOGSDS

Load Complement d FEEREEEE X EI N I AR A B A N AR A B R B A B B I

Add G ...eerecvosscocossoscssosssossscnscsocssasscscnone
Subtract d seeceecscessacassss cececsassacssesressasna
XXXX Load dm ..c.seveccecosvcsccscssosassoscscscscssansssnce
XXXX Add dm ,.eeecessvecsocacscssscccssscsoscosnsnana

XXXX Logical product dm

' FEEEENERE N I I I BRI

XXXX Logical difference dm ,.cceoeevecveccsscccsancns

Pass T EEEEEEEEE N I N IR R B BN B A AR S B A I L LB AL B A

PaSS S S 05 0 A 00 CCECE IO SRS C LA NEOLOEPEIIPPISIOILINSIOIETSECRES s

PaSS e s 0s s e s s es s Ve 2@ e B B B AP EIEN GBI DBIEOCEBIT RGNS

Pass .s.00s000e cessses csans
Load (d) @ 8 0 & P W 60900 g NN

5 00 00900 P S 0L ORISR LNt

S0P PSSOV LB OLSCIOIETEISERECSGDS

’Add (d) e 280 0P et ¢te s oo RN R R R RN WA SR B B s e

Subtract (d) s e M s assesosssssIBseRRsclRssRcsar tee s
Logical difference (d) .vvcvececvensenccncanss esecces
Store (d) € ¢ 0 00 O 0LEIBEEPEESIOEIPOIOIOIRITEEERIOIRNBTEOEPRIRROEOIOTS .

Replace add (d) P PP AC ORI NIEOLIIEEETEQROIOIOGIIEAIIDOENESIRTSLS
Replace add one (d) S0 ISP IO IPIORPIINIIOGEOOIOGIPOIEIERIEDRNOITOSDS

Replace subtract one (d)

ooooo 400 E S IBCOBNCLEOOOELELEIPNNSES

Load ((d)) cuivevseceoronccracascacoavasvasnsnosanannse
Add ((d)) seveeesvvecoannanonss ceesssranescssvecssnasas
Subtract ((d)) eseeecevvoscccoassvescasvsasroacssosnosnn

Logical difference ((d))

e0 s 000008 s s0csesn sa0s oo

Store ((d)) ceevevsocvecsrsacesscvsesssocsscssosscssacas
Replace add ((d)) sivseeecscececcrssoossoscccccssosaans
Replace add one ((d)) seeeevevscessoasccscssoosansans
Replace subtract one ((d))

ix

5 0 660008 LI NP OB GNP

UIU\U\U\UIU1$|U1U1U1U1U\U1
000N PWN RO
- O

'
Pt ps
W N

5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-26
5-26
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-36
5-37
5-38
5-40
5-41
5-43
5-45
5-47

LASL-AEC OFFICH

"REV. i3

5000

50XX
5100
51XX
5200
52XX
5300
53XX
5400
54XX
5500
55XX
5600
56XX
5700
57X
60XX
61XX
62XX
63XX
64XX
65XX
66XX
67XX
70XX
71XX
72XX
73XX
74XX
75XX
76XX
77XX

XXXX Load (M) weeeecevncassosoncsssssossnsssssosscsses 5-49
XXXX Load (m + (d)) veueveeveovocecaransssancesnsssss 5-50
XXXX Add () seeuvevoeeencssosensossssnsscsonnssascne 552
XXXX Add (m + (d)) eeevvrecacsonssossnnsscsoansnassss D34
XXXX SUBETACt (M) seveesoonscvnscncsssssssnsnvsssoces 3-56
XXXX Subtract (M 4 (4)) sevececocvovecesassosacscecas =37
XXXX Logical difference (M) ...eeveecvsescccccccsnoce 5-59
XXXX Logical difference (m + (d)) ..ccevvvevesncaosses 53-61
XXXX Store (M) seeeeosnessoceosesassssasassesasanssss 5-63
XXXX Store (M + (d)) cevecesernsscsoseossonssessnssns 5-64
XXXX Replace
XXXX Replace
XXXX Replace
XXXX Replace
XXXX Replace
XXXX Replace

XXX Jump
XXX Jump
XXX Jump
XXXX Jump
XXX Jump
XXXX Jump
XXX Jump
XXX Jump

on
on
on
on
on
on
on
on

add (M) sssveecooccvorevsassasssacsencss =66
add (@ + (d)) cecevevsrscrsvoccscsscssss =68
add one (M) seseeeoescevsscsssasssesnses 9-70
add one (m+ (d)) sesencsssveesasebnc e 5"72
subtract one (M) seoesecoscececsesvsssssee =74
subtract one (m+ (d)) vvesevevevensases 3=76
input word flag .seeessscecsococccoscsces 378
no input word flag s.eeeeeceescccccscaes 9-79
input record flag .s.esesesvesseccsssesss 5-80
no input record flag ..seeseeesccecsssss 5-80
output word flag ...cecieeececcvocecccnce 5-80
no output word flag .essescecscscscsssss 5-81
output record flag ..ceeeccsvossascsssas 3-8l
no output record flagceevescesesnss 5-81

Input to A from channel dcieeeeeressssacsscesns 5-82
XXXX Input (A) words to m from chammel d ceessss D=83
Output from A on channel deceveonsancns eresennee 5-89
XXXX Output (A) words fromm on channel dc0000.. 5-90
OQutput record flag on channel dccvevenvcncncnnnes 5-94

Pass ceeee

80 80 6068 00T S 0PN SR ORI IIRRRERSIPCIOIPPIDISEOIRNRITTSTE 5-95

Pass 2 0 0 9 9 08P GO PSLOEEEVESNEIENQEOESRBErIIIIDIOLIISNSISEOSODS 5-95

EXTOT SEOP eeoerseassoasocsasosssessessssssasseassscs 995

)

)

TREV. I3

1-1.
1-2.
1-3.
1-4.

1-5.

2-3.

2-4.

2-5.

2-6.

2-7.

2-8.

2-9.

2-10.
2-11.
2-12.
2-13.
2-14.

2-15.

FIGURES

7600 System Communication..........ecceeeeecaaonss 1-2
CPU Computation Sectiom.......cvoetuvevecncnscenens 1-7
“CPU Exchange Package......coveerveoroconsosconcens 1-21
'I/0 Section Exchange Package Areas in S(M......... 1-24
'1/0 Section Buffer Areas in SQM......... Ceseseaane 1-25
_Operating System Storage Allocation............... 1-28
CPU Instruction Stack............. cesearessresaren 2-4
CPU INStruction ISSUE....v.veerrsvosanarcosccnnnns 2-14
Boolean Unit....eeecceeeeersroroncenaasssascononsnse 2-22
Shift Unit....oiveeerenneereoenonsoasanccacanannns 2-25
Normalize Unit........0.0.. R R R R 2-30
Long Add Unit..‘ tecsscesenena 2-34
Floating Add Unit............. cescessecetseasanans 2-37
Floating Multiply Unit,.....ccctiucrnerunconrannsns 2-44
Floating Divide Unit.......c.iiiiniaiinarasanncnss 2-51
Population Count Unit........coevv0e tesecevenrenas 2-59
Increment Unit.....oeeveceocoescocsovooscssanssanns 2-61
Instruction Branching........ccveveeennns tesesennns 2-65
Exchange SequUenCe........ccoveesneneceresscssannas 2-73
Program Status Register (PSD)......ccvvvneennnanns 2-81
X RegLBLEYS. . ..uvesveseassossssosnsnssseacsnsossves 2-89

x{

72-180
2-19,
2-20.

2-21.

2-23.
2.24,
2-25.
2-26.
2-27.
2-28.

1229,

-a’lo

7 X Register Access Control....................-..

7B Registers-cooooooooooncoaooocooocoooooc..vtoco

A Registers.......................-.............

_SCH Organixation...............--...............

Storage Address Stack (SAS).....-.....'........I

_SCH Bank..'...'..............l...l'.............

7St°rage Word Stack.ooﬁooovooo-Ooooa.cooc.'ocoocc

SCM Data DistributionNeeccecsvercosccccvocescasnsnss
SCM Destination Control.seceseccecocssscsssscsas
Exchange Destination Controleceseccccosccecacess
1/0 Section OrganizatioNececsccesccscscecocccsne
Channel Input Control Uniteecseecessccsccoscccsnce

Input Data Merge Networﬁooooooooonoooooo-oootbot

7Channe1 Output Control Uniteeeaceosvcecsccsccnces

"PPU Organization.s.eosevevvsscscercscvcscocncnce
70perand Arithmetic...................;..........
"Address Ar{ithmetiC.ccoesecssososccassccovscscses
"PPU Storage Bank.eeeocscssossssnescsccccccsccanne
‘Write Data SeleCtioNeesceccesssssassasecoscoosss
" Instruction TranslatioN...eececscesccscacacccens

7In'truction Timing..-.........................-o

xii

2-92

2-97

2-101
2-108
z2-110
2-119
2-123
2-129
2-132
2-136
2-139
2-141
2-151

2-153

41

4-12
4220
425
4-28

4-34

D

)

EV. I3

4-8.
4-9
4-10.

4-11.

4a12,

Input ChannelScececcecccrnescscoscsenrcncscocscnccce

Output Channeln.-...............................

Full Duplex Communication Channelecccesscccceccee

MCU Control Cablececccrcccvaacscncncosocsnosnssnoses

Error DetectiONececscsoccccsscencavecsccacscnsnoe

xiii

4-38
4-42
4-47
4-50

4+52

| T TP P IWE |

)

SYSTEM
DESCRIPTION

'S

PART I: SYSTEM DESCRIPTION

‘Introduction

The 7600 system is the result of a development program to provide

computing capacity substantially beyond that of the 6600 systems.
Central processor computation is expected to average four times as
fast as corresponding computation in the 6600 system. The 7600 system
is intended to be machine code upward compatible with the 6400/ 6600
systems in the area of central processor routines. It is not com-
patible on the machine code level in the area of system programs or
input-output drivers. The 7600 system input-output provisions have
been generalized and greatly expanded over those provided in the 6400/
6600 systems, Input-output data rates are not expected to average
substantially higher on a per channel basis than the rates in 6600
systems., A much larger volume of input-output data is handled in the
7600 system by a much larger number of input-output channels.

The 7600 system contains a central processing unit (CPU) and a number

of peripheral processing units (PPU). Some of the PPU are physically
located with the CPU and others may be remotely located. The PPU
communicate with the CPU over high speed data links with the data
buffered at the CPU end of the data link, The CPU is interrupted by
the PPU once per data record, or on prescribed quantities of buffer
data for long records. The PPU provide a communication and message
switching function between the CPU and individual peripheral equip-
ment controllers. Each PPU has a number of high speed data links to
individual peripheral equipment controllers in addition to the data
link to the CPU. The PPU time shares the data link to the CPU among
the peripheral equipment controllers on a record by record basis,

The 7600 system is designed to accommodate multiple operating stationms

Each operating station is organized around a PPU which communicates
directly with the CPU over its associated data link. New peripheral
equipment configurations are being developed which will operate from
programable equipment controllers and are specifically intended for
this application. These controllers will be able to communicate with
the PPU on a record by record basis at higher rates than the existing
6400/ 6600 equipment.

1-0

ASL-AEC vomcmq

7600 system parameters

'CPU computation section

- 60 bit internal word

- binary computation in fixed point and floating point format
- nine independent arithmetic units

- twelve word instruction stack

- synchronous internal logic with 27.5 nanosecond clock period

CPU small core memory

- 65,536 words of coincident current memory (60 bit)
- 32 independent banks

- 2048 words per bank

- 275 nanosecond read/write cycle time

- 27.5 nanosecond per word maximum transfer rate

CPU large core memory

- 512,000 words of linear select memory (60 bit)
8 independent banks

64,000 words per bank

1760 nanosecond read/write cycle time

8 words read simultaneously each reference
27.5 nanosecond per word maximum transfer rate

CPU input-output section o

- 15 independent channels (asynchronous)

- each channel full duplex (60 bit)

buffer areas of 64 or 128 words each channel

55 nanosecond per 60 bit word maximum transfer rate

PPU computation section

- 12 bit internal word
- binary computation in fixed point
- synchronous intermal logic with 27.5 nanosecond clock period

"PPU core memory

- 4096 words of coincident current memory (12 bit)
- two independent banks

- 2048 words per bank

- 275 nanosecond read/write cycle time

"PPU input-output section

- 8 independent channels (asynchronous)
- each channel full duplex (12 bit)
- 137.5 nanosecond per 12 bit word maximum transfer rate

UOIDIUNWIWOY WaskS 009L

syuoq 2¢
spIom 9¢ G'GY
(SHG09) WIS

e

S|auuoy2 Gj

(811q 09) uoydes
ndinQ —ynduy

SHUOQ §
spiom 000" 2IS
(841G 09) WO

aEm—"

(s¢:9 09)
UoHIIG
uoipyndwo)

{(nNdD) vun oc_mmou_o& Joauen

e LE
swniq
seuuoyd g 49§1044u0) _
SPIOM 96 0P juswidinby
(84921 Ndd l.l|l;l!|..LA|.V , s Asig
o EEEE—
sjauubyo g JR1044u0) S0 4310
Spiom 9600 juswdinb3
(19 21} Ndd . : e $jiun 3dD}
swwoyog e 181104ju07)
SPIOR 960 e 1 wewdinb3
(80621} Ndd ; < > KoydsiQ
[spuuoyog |
Spiom 96 0Y ..o:o“_.cwu
(s#q21) Ndd _:._nE '3 Je————> sajund 3ui7
S|PUUDYD 8§ . 4ound pio)
SpIoM 9500, AHPIHWD v T
(s#Q21) Ndqg uswdinby
, i - 19pDII pIOD

LASL-AEC-OFFICIAT]

" System communication

"The 7600 system is divided into a number of major sections which

are interconnected as shown in figure 1., All input data enters the
system at a peripheral equipment controller, All output data leaves
the system -at a peripheral equipment controller. The PPU serve to
gather input data from the peripheral equipment controllers for
delivery to the CPU for processing, and distribute processed data

to the equipment controllers for output devices, The communication
between PPU and equipment controller is generally limited by the
rate at which the equipment controller can deliver or accept data,
Most equipment controllers in the 7600 system will contain a core
memory buffer capable of holding one record of data for the attached
input or output devices. The communication between PPU and equip-
ment controller is then a one record burst of data followed by a
relatively long period of inaction. The PPU is then able to time
share its channel to the CPU among a number of equipment controllers
without storing more than one record of data in its own memory at
any one time, -

Communication between a PPU and a peripheral equipment controller

is over a 12 bit full duplex channel, Each channel has a 12 bit
data path from PPU to controller, and a separate 12 bit data path
from controller to PPU, These two data paths are independent and
may operate simultaneously. Each path has two associated control
lines carrying control information in the direction of data flow,
These lines carry a "word flag" to indicate passage of each 12 bit
word of data, and a "record flag' to indicate the completion of a
record of data, Each path has one associated control line carrying
control information against the direction of data flow, This line
carries a 'word resume'" signal to indicate receipt of a data word.
These channels are descrised in detail in part 4 of this manual,

Communication between a PPU and the CPU is over a 12 bit full duplex

channel identical to that described above., The 12 bit data path from
PPU to CPU includes a 60 bit assembly register at the CPU end of the
data link, This register assembles five 12 bit words into a 60 bit
word for entry into the CPU memory. The 12 bit data path from CPU

to PPU includes a 60 bit disassembly register at the CPU end of the
data link, This register disassembles a 60 bit word from the CPU
memory into five 12 bit words for transmission over the data link.

1-3

O

@

'A maximum of 15 PPU may be directly conmected to the CPU., Each CPU

channel has assembly and disassembly registers to convert from 60 bit
to 12 bit word length., All 15 CPU input-output channels may be in
operation at the same time, Data is transmitted to, or from, PPU
on a record by record basis. The CPU program is interrupted at the
end of a.record transmission to exchange control information with
the communicating PPU or to initiate transmission of another record.
On very long records the CPU program is interrupted at prescribed
intervals in the buffer data, The frequency of this interruption

is a function of the buffer size and may be preset individually for
each CPU channel. Details of the CPU buffer operation are described
in detail in part 2 of this manual.

7Operating,system

The 7600 hardware was designed with a particular software approach

in mind, This approach is an outgrowth of experience with the
Chippewa Operating System (COS) for the 6600 system. The 7600
operating system software will be described in a separate manual.
Reference to software in this manual will be limited to those
areas where hardware provisions are a direct result of software
considerations,

" System monitqr

‘The system monitor is a CPU program in the 7600 system. This program

is loaded with the operating system on a machine ''dead start" and
remains in the CPU core memory as long as the operating system is
used. A portion of the system monitor resides permanently in the
small core memory (SCM) section of the CPU., This portion of the
monitor program is called the 'resident monitor" program. The bulk
of the system monitor resides in the large core memory (LCM) section
of the CPU, This portion of the monitor program is called piecemeal
into the SCM for execution as overlays on the resident monitor program,

" Object program

‘An object program is defined in this manual to mean any CPU program

other than the system monitor program, This term is used to describe
generally a job oriented program, An object program may be a machine
language program such as a FORTRAN compiler, or it may be a program
which results from compiling FORTRAN statements with a compiler,

1-4

LASL-AEC OFFICIAT]

.

“Central processing unit (CPU)

"The CPU is a single integrated data processing unit, It consists

of a computation section, small core memory, large core memory, and

input-output section, These sections are all contained in one main

frame cabinet and operate in a tightly synchronous mode with a clock
period of 27,5 nanoseconds., Communication with equipment outside

of the main frame cabinet is asynchronous.

" CPU core memory

‘The CPU contains two types of internal core memory, One type,

designated as the small core memory (SCM), is a many bank coincident
current type memory with a total capacity of 64K words of 60 bit
length (K = 1024). The other type, designated as the large core
memory (LCM) is a linear selection type of memory im which eight

60 bit words are addressed as a single unit. The LCM has a total
capacity of 500K words of 60 bit length. These two types of inter-
nal memory have significantly different system functions in the CPU,

The SCM is arranged in 32 banks of 2K words each, Each bank is

independent of the other 31 banks, Maximum data transfer rate
between the SCM as a unit and other parts of the system is one word
each clock period. Each SCM bank has a four clock period access
time from arrival of the storage address to readout of the 60 bit
word, The total read/write cycle time for a SCM bank is ten clock
periods., It is thus possible for a maximum of ten SCM banks to be
in operation at one time, This maximum occurs during block copy
instructions between SCM and LCM in which the addresses for sequen-
tial words cause no SCM bank conflicts, In random addressing of
the SCM for CPU program data, CPU instructions, and input-output
channel data, an average of four SCM banks in operation at one time
is more normal,

The SCM performs certain basic functions in system operation which

the LCM cannot effectively perform. These functions are essentially
ones requiring rapid random access to unrelated fields of data., The
first 4K addresses in SCM are reserved for input-output buffer and
control areas, These areas are addressed by the CPU input-output
section asg required to service the communication channels to the
PPU. CPU object programs do not have access to these areas., The
next 1K addresses are reserved for the resident monitor program.

1-5

‘The remainder of the SCM is divided between fields of CPU program
code and fields of data for the currently executing program.

The LCM is arranged in eight banks of 64K words each, Each bank is
independent of the other seven banks. A storage reference to a LCM
bank results in a read/write cycle which takes 64 clock periods,
Eight 60 bit words are read simultaneously from a LCM bank whenever

a read/write cycle occurs. These words are held in a 480 bit operand
register for each LCM bank. Subsequent reference to a word residing
in one of these operand registers allows either read or write function
without the delay of a bank read/write cycle. Maximum data transfer
rate between the LCM as a unit and other parts of the system is one
word each clock period. This maximum transfer rate occurs during
block copy instructions between LCM and SCM., LCM bank read/write
cycles are anticipated in the block copy operation to avoid a bank
access delay.

‘The LCM provides the basic working storage for the CPU. All object
programs are assembled here for execution in the SCM., All data files
are buffered through LCM for the object programs. Small object pro-
grams are generally run to completion in SCM with the complete input
file in LCM at the beginning of execution, and the complete output
file in LCM at the end of execution.

The low order addresses in LCM are reserved for monitor program
overlays, mathematic routine library, and FORTRAN compiler. These
areas require approximately 32K of the 500K available storage. The
remainder of LCM is divided into fields for the various operating
stations in the system,

_Computation section

' The computation section of the CPU contains nine segmented arithmetic
units, 24 operating registers, and a 12 word instruction stack. These
units work together to execute a CPU program stored in the SCM. Data
moves into, and out of, the computation section of the CPU through the
operating registers. Data may be directly addressed in either the SCM
or the LCM. The general information flow in this section is illustrated
in figure 1-2,

1-6

O L T e Co-0 Ot ﬁ
\ L N ,r / fvi
{ i - Lot A
uoidag uoioindwod NdY 2-1 B4
R
@
0i0Q SS0.ppY vioQ sseuppy
W WO WOS WIS
I
1
1
1
I
|
(siq 81) _
Eo_wmoom__m (s4q09) sijsiday x nw,.n_mouw:d
. ~
J
juawiesdul
(044u0))
uno) voyoindoy A||_ WOS woi4
21jDULION PIOM UOYONISUT JUBLING
BNS re
uo900g _
sping bunoot 4 I L
Ayduiny Buijooy 4 {
ppy Buyooyy . [L
PPy buoq I L
siun { -
|ouoioun 4
! (SHQ 08) ¥O0IS Prop uONINISUT

1IN0 DIV-15V1Y

‘Instruction word stack

The instruction word stack is a group of twelve 60 bit registers in
the CPU computation section which hold program instruction words for
execution, The instruction stack information is essentially a moving
window in the program code. The stack is filled two words ahead of
the program address currently being executed. A small program loop
may frequently be entirely contained within the instruction stack.
When this happens the loop may be executed repeatedly without further
references to SQM.

The current instruction word is contained in a special register in
the CPU computation section, This register is designated the CIW
register. Program instruction words are read one at a time from the
instruction stack and are interpreted in the CIW register for exe-
cution. This register controls all of the data transmission paths
between the operating registers and the functionmal units in the
computation section.

X registers

There are eight 60 bit X registers in the computation section of the
CPU. These registers are the principal data handling registers for
computation, Data flows from these registers to the SCM and the LCM.
Data also flows from SCM and LCM into these registers. -All 60 bit
operands involved in computation must originate and terminate in
these registers. Detail characteristics of these registers are
provided in part two of this manual,

A registers

There are eight 18 bit A registers in the computation section of the
CPU. These registers are essentially SCM operand address registers.
These registers are associated one-for-one with the X registers. When
an address is entered in an A register the corresponding data in the
X register is normally read from, or storad into, SCM at that address.

B registers

There are eight 18 bit B registers in the computation section of
the CPU. These registers are primarily indexing registers for
controlling program execution. Program loop counts may be incre-
mented or decremented in these registers. Program addresses may be
modified on the way to an A register by adding or subtracting omne
or more B register quantities. Further detall on these registers
is provided in part two of this manual.

1-8

lASL-AEC-OFHCIAq

Functional units

There are nine functional units in the computation section of the

CPU. Each is a specialized arithmetic unit with algorithms for a
portion of the CPU imstructions. Each unit is independent of the
other units, and a number of functional units may be in operation at
the same time, There are no 'visible'" registers in the functional
units from a programing standpoint, A functional unit receives omne or
two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers when the
function has been performed. There is no information retained in a
functional unit for reference in subsequent instructions. These units
operate essentially in a three address mode, with very limited source
and destination addressing.

"All functional units with the exception of the floating multiply

and divide units have one clock period segmentation, This means

that the information arriving at the unit, or moving within the

unit, is captured and held in a new set of registers at the end of

every clock period, It is therefore possible to start a new set of

operands for unrelated computation into a functional unit each clock

period even though the unit may require more than one clock period

to complete the calculation. This process may be compared to a

delay line in which data moves through the unit in segments to

arrive at the destination in the proper order but at a later time. -
All functional units perform their algorithms in a fixed amount of (ﬁ)
time. No delays are possible once the operands have been delivered h
to the front of the unit,

" The floating multiply unit has two clock period segmentation,

Operands may enter the multiply unit in any clock period providing
there was no operation initiated in the preceding clock period.
There is a one clock period delay in initiating a multiply instruc-
tion if another multiply instruction has just been started.

The floating divide unit is the only functional unit in which an

iterative algorithm is executed, There is essentially no segmentation
possible in this unit although the beginning of a new operation can
overlap the completion of the previous operation by two clock periods,

1-9

The table below lists the functional units with the number of clock
periods required for execution in each unit. The first column
indicates the number of clock periods in each segment. The second
column indicates the number of clock periods required to execute
the function from the time the operands leave the operating registers
until the ‘result arrives back at the operating registers. Each
functional unit has a fixed execution time which is independent of
its possible modes of operation. For example, a double precision
multiply requires the same amount of time as a single precision
multiply. The list of octal designators for each functional unit
identifies which CPU instructions are performed in that unit.

“segment time ‘execution time

‘Long add unit 1 clock period 2 clock periods
(36, 37)

‘Floating add unit 1 clock perind 4 clock periods
(30, 31, 32, 33, 34, 35)

_Floating nultiply unit 2 clock periods 5 clock periods
(40, 41, 42)

‘Floating divide unit 18 clock periods 20 clock periods
(44, 45)

‘Boolean unit 1 clock period ‘2 clock periods
(10 through 17, 26, 27)

‘Shift unit 1 clock period 2 clock periods
(20, 21, 22, 23, 43)

‘Normalize unit 1 clock period '3 clock periods
(24, 25)

_Population count unit 1 clock period 2 clock periods
(47)

‘Increment unit 1 clock period 2 clock periods

(50 through 77)

1-10

-AlC-Ol-HCiAq

_Binary arithmetic

"All binary arithmetic operations in the CPU computation section are
performed in a ones complement subtractive mode. This is called simply
"ones complement' mode in the remainder of this manual. This mode of
arithmetic is represented by the recursive boolean expressions below
for the sum of two binary numbers.

"A(I) = .NOT. C(I) .AND..NOT. D(I) .AND..NOT. B(I) .OR.
C(I) .AND. D(I) .AND..NOT. B(I) .OR.
C(I) .AND, B(I) .AND..NOT. D(I) .OR.
D(I) .AND. B(I) .AND..NOT. C(I)

"B(I+l) = .NOT. C(I) .AND,.NOT. D(I) .AND,.NOT. B(I) .OR.
B(I) .AND,.NOT. C(I) .AND,.NOT. D(I) .OR.
C(I) .AND. B(I) .AND,.NOT. D(I) .OR.
D(I) .AND. B(I) .AND,.NOT. C(I)

B(0) = B(M)

"where: M = number of bit positions in adder

D(1) addend bit I

C(I) = augend bit I

B(I) = borrow into bit position I
A(D) sum bit 1

I 0,1,2,...,M-1 _(u)

The above expressions for the addition of two integers are symmetrical

in the appearance of the augend and addend bits., The order of addition
is therefore not important. This form of arithmetic creates two
representations of zero. A word of all zero bits 1s positive zero.

A word of all one bits is 1egative zero. A negative zero can be
generated in the addition process only if the addend and the augend

are negative zero. The modulus in the addition process is always the
power of two corresponding to the adder length, minus one.

‘Subtraction is performed by complementing the subtrahend and adding to

the minuend. Multiplication and division are sequences of addition
operations.

Floating point arithmetic

Floating point numbers are represented in a standard format throughout

the CPU. This format is a packed representation of a signed binary
integer coefficient times two with a signed binary integer exponent,
The coefficient {s a 49 bit ones complement integer, The exponent is
an eleven bit ones complement integer. The sign of the coefficient
is separated from the rest of the coefficient as shown in the 60 bit
word organization below.

1-11

‘59 58 48 47 0

! " 48

\

coefficient biased integer coefficient
sign bit exponent

‘Floating point format

"The exponent portion of the floating point format is biased by

complementing the exponent sign bit, This particular format for
floating point numbers is chosen because the packed form may be
treated as a 60 bit integer for sign, threshold, equality, and zero
tests., The same set of branch instructions can therefore be used
for both integer and floating point forms. A threshold test can be
made by subtracting two floating point numbers in the long add unit,
rather than the floating add unit, thus saving two clock periods in
execution,

‘Some examples of packed and unpacked floating point numbers are

shown below in octal notation to illustrate the packing process.

The first two examples are different forms of the integer +1., The
third example is +100 decimal and the fourth example is -100 decimal.
The last two examples are of very large and very small positive
numbers, ' -

‘unpacked coefficient = 0000 0000 0000 0000 0001

unpacked exponent = 00 0000
packed format = 2000 0000 0000 0000 0001

‘unpacked coefficient = 0000 4000 0000 0000 0000

unpacked exponent = 77 7720
packed format = 1720 4000 0000 0000 0000

‘unpacked coefficient = 0000 6200 0000 0000 0000

unpacked exponent = 77 7726
packed format = 1726 6200 0000 0000 0000

‘unpacked coefficient = 7777 1577 7777 7777 7777

unpacked exponent = 77 7726
packed format = 6051 1577 7777 7777 7777

‘unpacked coefficient = 0000 4771 3000 0044 7021

unpacked exponent = 00 1363
packed format = 3363 4771 3000 0044 7021

‘unpacked coefficient = 00 6301 0277 4315 6033

unpacked exponent = 77 6210
packed format = 0210 6301 0277 4315 6033

1-12

lASL-AEC-OH’ICIAq

‘—Special floating point forms

Special values are used in floating point format to indicate over-

flow of the floating point range, underflow of the floating point
range, and indefinite results. These special values are sensed by
the functional units to preserve the significance of the calculation
as long as possible.

Overflow of the floating point range is indicated by an exponent

value of +1777 octal. This is the largest exponent value that can
be represented in the floating point format, This exponent value
may result from the calculation in a floating point unit in which
this exponent value, together with the computed coefficient value,
is a correct representation of the result. This situation is called
a "partial overflow'" in this manual. An overflow error condition

is not indicated by the functional unit generating this result,
Further computation in floating point functional units using this
result will be detected as an overflow, however. A 'complete over-
flow" occurs whenever a floating point functional unit computes a
result which requires an exponent larger than +1777 octal, 1In this
case the functional unit indicates an overflow error condition and
packs a "complete overflow" value for the result. This result has

a +1777 exponent and a zero coefficient., The sign of the coefficient
will be the same as that which would have been generated if the
result had not overflowed the floating point range,

Underflow of the floating point-range is indicated by an exponent

value of -1777 octal, This is the smallest exponent value that can
be represented in the floating point format. This exponent value
may result from the calculation in a floating point unit in which
this exponent value, together with the computed coefficient value,
is a correct representation of the result. This situation is called
a "partial underflow" in this manual. An underflow error condition
is not indicated by the functional unit generating this result,
Further computation in floating point functional units using this
result may be detected as an underflow, however. A "complete under-
flow" occurs whenever a floating point functional unit computes a
result which requires an exponent smaller than -1777 octal., In this
case the functional unit indicates an underflow error condition and
packs a "complete underflow' value for the result. This result has a
-1777 exponent and a zero coefficient., The sign of the coefficient
will be the same as that which would have been generated if the
result had not underflowed the floating point range. The complete
underflow indicator is a word of all zero bits, or all one bits,
depending on the sign. It is the same as a zero word in integer
format.

1-13

An indefinite result indicator is generated by a floatimng point
functional unit whenever the calculation cannot be resolved. This

is the case in division when the divisor is zero and the dividend

i{s also zero. It is also the case in multiplication of an underflow
number times an overflow number. The indefinite result indicator

is a value that cannot occur in normal floating point calculations.
This indicator corresponds to a minus zero exponent and a zero
coefficient. An indefinite error condition is indicated by the
functional unit generating this result. Any floating point functional
unit receiving an indefinite indicator as an operand will generate

an indefinite result no matter what the other operand value. Indefi-
nite indicators are always generated with a positive sign. They may
occur as operands with negative sign, however, because of complementation
in the boolean unit,

‘Normalized floating point

A floating point number in packed format is normalized if the coef-
ficient sign bit is di fferent from bit 47. This condition implies
that the coefficient has been shifted to the left as far as possible,
and therefore the floating point number has no leading zeros in the
coefficient. The normalize unit performs this function, The float-
ing multiply and floating divide units deliver normalized results
when provided with normalized operands. The floating add unit ‘may
deliver un-normalized results even if both operands are normalized.
It is therefore necessary to program the normalize operation in the
normalize unit after each sequence of floating add or subtract
operations if the result is to be kept in a normalized form.

Double precision numbers

Computation in double precision or multiple precision modes may be
performed with the aid of the double precision instructions (32, 33,
42)., The floating add unit and the floating multiply unit perform
all computation in a double precision mode. The single precision
instructions use only the upper half of the 96 bit result. The
double precision instructions perform the same calculation but
deliver the lower half of the 96 bit result with the appropriate
exponent value. Double precision division must be programed using
the single precision divide instruction as a first approximation.

It is necessary to reconstruct the remainder by multiplying quotient
by divisor in a double precision mode and subtracting from dividend,

1-14

LASL-A[C-OFHCMq

"Rounded computation

Optional floating point instructions are provided to round the results

in single precision computation., These instructions are executed in
the same amount of time as the unrounded versions. The operands are
modified in the functional units to accomplish the rounding function.
The amount of bias introduced by the rounding operation varies from
unit to unit and is affected by the coefficient value in the operands.
These effects are described in detail for each of the round instruc-
tions in part 3 of this manual,

Integer multiplication

There is no CPU integer multiply instruction. Integer multiplication

must be performed in the floating multiply unit. This is accomplished
by packing the integers into floating point format using the pack
instruction and a zero exponent value, The product can be formed

for small integers without normalizing the operands by using the
double precision multiply instruction., The result need not be
unpacked if the destination for the product is an A register or a

B register since the increment unit extracts only the lowest order

18 bits of the 60 bit word,

7Intqggr division

There is no CPU integer divide instruction. Integer division must

be performed in the floating point divide unit., This is accomplished
by packing the integers into floating point format using the pack
instruction and a zero exponent value, The divisor must then be
normalized with a 24 instruction. The dividend need not be normal-
ized. The resulting quotient must be unpacked and the coefficient
shifted by the amount of the unpacked exponent using the 22 instruction
to obtain the integer quotient,

'1-15

™

" CPU instruction format

7Program instruction words are divided into four 15 bit fields called

"parcels' in this manual, The first parcel in a word is defined to

be the highest order 15 bits of the 60 bit word, The second, third,
and fourth parcels then follow in order. A CPU instruction may occupy
either one or two parcels, depending on the type of instruction. If
an instruction requires two parcels it must not begin in the fourth
parcel of the word, The possible arrangements of one and two parcel
instructions in a 60 bit word are shown below,

15 15 15 15
[30 5 [5 |
[s | 30 s |
15 15 30
30 1 30

It may be necessary in program code to occasionally complete a 60

bit instruction word with one parcel pass instructions. This must

be done in those cases where a two parcel instruction would require
starting in the fourth parcel of a word. One parcel pass instructions
are also used to complete a 60 bit word in order to place a particular
instruction in the first parcel of a word, This is necessary for
branch entry points because a branch instruction destination address
must begin with a new word,

'A one parcel instruction is composed of five octal digits called

""designators" in this manual. These designators are identified by
the symbols g, h, i, j, and k, The designators are arranged in
order in the 15 bit parcel as shown below,

‘One parcel instruction format

1-16

IAq

P

“The g designator generally identifies the type of instruction and

frequently specifies the functional unit, The h designator completes
the function code specification for all but a few instructions by
specifying the functional unit mode. The i, j, and k designators are
the operand source and destination indicators, These designators
specify which one of the eight possible A, B, or X registers is
referenced, The selection of register type--A, B, or X--is implied

in the instruction function code by the g and h designators. The i
designator is always the destination indicator. If there are two
destinations required for the instruction, both the i and j designators
specify destination,

A two parcel instruction contains an 18 bit operand to be used in the

instruction execution, This is used for branch destination addresses
and for small integer constants, There are five designators in this
instruction format, The g, h, i, and j designators have similar roles
to those described for the one parcel instructions. The k designator
is expanded into the 18 bit K operand as shown below,

Two parcel instruction fogmat
- P s L, S P, -

‘The two parcel instructions should be used only where the operand in

the instruction is an invariant throughout the complete execution of
the program in SCM, Modification of program code during execution of
that code has several problems which are not easily covered in program
layout. There are no hardware provisions to update the content of the
instruction stack, for example, when one of the instructions in the
stack is modified in storage. The two parcel instructions are executed
in the same time as equivalent one parcel instructions. Two parcel
instructions tend to accelerate the program code movement through the
instruction stack, however, which causes increased storage references
for program code and more frequent delays in filling the instruction
stack, As a result, the one parcel instructions should be favored
whenever a choice 1s available in program coding.

1-17

>(*

Storage field protection

Each object program at execution time has a designated field of SCM
and a designated field of LCM in which it may address data. These
fields are specified by the monitor program at the time the object
program is initiated., Each field may begin at an arbitrary address
in storage and continue for an arbitrary length, All addresses in
an object program field must be contiguous.

The storage bounds for an object program are contained in four hardware
registers in the CPU, These registers are:

_(RAS) Reference address for small core memory
This is an 18 bit register which defines the absolute SCM address which
is the first address in the SCM field.

(FLS) Field length for small core memory
This is an 18 bit register which defines the length of the SCM field.

_(RAL) Reference address for large core memory
This is a 24 bit register which defines the absolute L(M address which
is the first address in the LCM field.

(FLL) Field length for large core memory
This is a 24 bit register which defines the length of the LCM field.

All addresses for SCM or LCM contained in the object program code are
relative to the reference address which begins the defined field. It
is therefore not possible for an object program to read or alter any
storage locations with a lower absolute address than the reference
address. Each object program reference to storage is checked against
the appropriate field length to determine if the address is within the
bounds assigned. A storage reference beyond the assigned field length
is prevented from altering the storage content and creates an error
condition which terminates the program execution.

1-18

LASL-AEC-omcmq

Program branching

Program branching presents some special situations because of the

instruction stack. The current program address is maintained at all
times in a program address register (P). This register contains the
relative address in SCM for the word currently in the CIW register,
When program instruction words are read sequentially from the instruc-
tion stack into the CIW register, the P register is advanced one count
for each word. The instruction stack contains 12 words of instruction
code in a group of registers called the instruction word stack (IWS).
Associated with each word in the instruction word stack is an 18 bit
address. The 12 addresses in the instruction stack are contained in
twelve 18 bit registers called the instruction address stack (IAS).
The addresses in the IAS move with the words in the 1WS so that the
one-for-one relationship between address and program instruction word
is maintained as the words move through the instruction stack,

‘When a program branch point is reached and the current program sequence

is terminated with a jump to a new program address, the new program
address is entered in the P register. This new program address is then
compared with the 12 addresses in the IAS to determine if the jump is
within the instruction stack, If a coincidence is found between the
new address in the P register and one of the 12 addresses in the IAS,
the associated word in the IWS is read immediately into the CIW register
and the jump instruction has been executed, If no coincidence is found
between (P) and the addresses in the IAS, the jump is "out of stack.,"
In this case a new sequence of instructions must be read from SCM at
the new program address (P) and entered in the instruction stack.
Completion of the jump instruction is delayed in this case by the
amount of time required for the first word to be read from SCM,

‘The old instruction words in the IWS are not cleared when a jump out

of stack occurs, The old words are simply shifted along in the IWS as
the new program sequence enters the instruction stack. It is therefore
possible to have several sequences of noncontiguous program code in

the instruction stack at one time., The program execution may jump

back and forth between these program sequences without leaving the
instruction stack as long as the current program address (P) does not
come within two words of the end of the program sequences held in the
instruction stack,.

1-19

" Exchange jump

‘The CPU exchange jump is a mechanism for switching CPU execution
between object program and monitor program., An object program which
requires monitor action for a library call, input-output request,

or error treatment performs an exchange jump to terminate its own
execution and begin the monitor program. Similarly, the monitor
program performs an exchange jump to initiate execution of a particular
object program,

The execution of an exchange jump involves the simultaneous storing

of all pertinent information in the CPU operating registers and con-
trol registers into SCM, and the reading of new information from SCM
into these same registers, This block of data is called an '"exchange
package.'" The execution of an exchange jump then involves the storing
of the exchange package for the terminating program and the reading

of the exchange package for the initiating program. The information
contained in an exchange package is shown in figure 3 on the following
page.

An "execution interval' for an exchange package is defined in this
manual to mean a period of time during which the particular exchange
package resides in the CPU hardware registers. The execution inter-
val begins with an exchange jump which reads the exchange package

from SCM and enters these parameters in the CPU registers, The
execution interval ends with another exchange jump which stores the
exchange package back into SCM. The complete execution of an object
program may then be composed of a number of execution intervals for
the object program exchange package interspersed with monitor activity.

An exchange package contains all of the information necessary to
resume the execution of a terminating program. The contents of the
operating registers A, B, and X are contained in the exchange package
along with the current program address P. The four storage bounds
registers RAS, FLS, RAL, and FLL are represented, In addition the
following four registers of special information are included in the
exchange package,

_(NEA) Normal exit address - This is a SCM absolute address for an
object program exchange exit instruction,

" (EEA) Error exit address - This is a SCM absolute address for an
exchange jump on error termination,

(BPA) Breakpoint address - This is a SCM relative address for
breakpointing an object program.

(PSD) Program status designation - This is a register of control
information, ‘

1-20

LASL-ALC omcmq

REV. 3

SCM locotion n 7/ P AO BPA
ol P2 RAS Al BI
w2 P4 FLS A2 52
ne3 P PSD A3 B3
n+4 RAL A4 B4
n+5 FLL A5 85
n+6 NEA A6 B6
ne7 EEA A7 B7
n+8 X0
n+9 XI
. n+10 X2
n+li X3
n+l2 X4
n+l3 - x5
n+l4 X6
ne!S X7
Fig.1-3 CPU Exchange Package
1-21
s

TN

_Program breakpoint

An object program may be executed in small sections during a debug-
ging phase by using the breakpoint address register (BPA). This is
a hardware register in the computation section of the CPU which is
loaded from the object program exchange package. A coincidence test
is made between (BPA) and the program address register (P) as each
program instruction word is read from the IWS to the CIW register,
When a coincidence occurs the program execution is terminated with
an exchange jump to the error exit address (EEA).

The monitor program controls the breakpoint address for debugging

an object program by altering the exchange package for the object
program before each execution interval. The monitor program receives
instructions for breakpoint control from an operator console or from
control cards in a job stack. It is possible to step through a
program one instruction word at a time using an operator console

to monitor the register values at each step.

" Error exits

Execution of an object program may be terminated by an exchange jump
to the error exit address (EEA) under certain conditions. Some of
these conditions may be selected by ‘mode declarations through the
monitor program, and some are unconditionmal. In general, errors
due to arithmetic overflow, underflow, or indefinite results during
computation may be allowed to proceed through the calculation, or
may cause an error exit, depending on mode selection, Errors due
to hardware failure or program addressing out of an assigned field
in storage cause unconditional error exits. In any error exit case
the monitor program has the ability to continue the object program
where the error can be corrected or ignored,

The error condition flags and mode selection flags are all contained
in an 18 bit program status designation (PSD) register, This register
is loaded from the exchange package for each object program, The mode
selections are made in the exchange package prior to the execution
interval by the monitor program. If an error condition occurs during
the execution interval the monitor program can determine the type of
error by analyzing the terminating exchange package parameters. Each
bit in the PSD register has significance either as a mode selection

or an error condition flag. These flags are described in detail in
part 2 of this manual.

1-22

LASL-AEC-OFH

T~

"CPU input-output section

The CPl' input-output section includes the mechanism to buffer data

to (or from) the directly connected PPU. Each PPU communicates with
the CPU over a 12 bit full duplex chanmel. Each channel has assembly
and disassembly registers to convert the 12 bit channel data to 60
bit CPU words. The function of the CPU input-output section is to
deliver these 60 bit words to the SCM for incoming data, read 60 bit
words from the SCM for outgoing data, and interrupt the CPU program
for monitor action on the buffer data as required.

The input-output section is able to process a maximum of one 60 bit

word each two clock periods. The effective processing rate is some-
what lower than this because of bank storage conflicts in SCM. When-
ever a bank conflict occurs on an input-output section request, the
communication path to the SCM is held up until the conflict is resolved,
Channel requests for a SCM word reference are processed on a priority
basis whenever the I/O section is not able to keep up with the channel
requests. The priority is assigned in order by channel number, with

the lowest order channels having the highest priority.

7There are a total of 15 channels in the 1/0 section of the CPU. These

channels are numbered in octal beginning with 01 and ending with 17,

Each channel has a SCM buffer area for incoming data and a separate

SCM buffer area for outgoing data. In addition each channel has an W
exchange package for incoming data and an exchange package for out- ()
going data. Each buffer area is’ divided into two fields, a lower

field and an upper field. Data is entered (or removed) from the

buffer area in a circular mode. The last word in the lower field

is followed by the first word in the upper field. The last word in

the upper field is followed by the first word in the lower field.

Whenever a buffer area has been filled (or emptied) to the point

where a field boundary is crossed, the CPU is interrupted through

the associated exchange package to process the buffer data. The

channel continues to fill (or empty) the other buffer field while

the CPU is processing this buffer data. For further details on this

buffer operation see part 2 of this manual.

‘The 1/0 section exchange package areas are permanently assigned in

the lowest order addresses of SCM. These areas are arranged as shown
in figure 1-4. The 1/0 section buffer areas are assigned in the next
higher order address positions of SCM. These areas may be changed
both in size and order (wiring change) to accommodate various types
of channel volume. A typical arrangement for the buffer areas is
shown in figure 1-5. Total I/0 section space in SCM cannot exceed
abgolute address 10,000 octal.

1-23

1000~

Channel 16 Chonnei 16 Channel 17 Channel {7
B) input package [output package) input packoge outpu? package
700 Chonnel 14 “Channel 14 Channel 15 “Channel 15
B “input package) output pockage input package) output pockage
800 Channel 12 Channel 12 Channel (3 Channel {3
_ 7inpu1 package “output pockoge input package output pockage
500 Channel 10 Channel {0 Chaonnel i1 Channel |}
_) input packaoge | output pockage _input pockoge output packoge
400 Channel 6 Channel 6 Channel 7 Channel 7
. “input pockage | output package input pockage | output package
300 Channel 4 Chonnet 4 Channel 5 Channel 5
_] input packoge output pockage input package | outpu! packoge
200 Chonnel 2 Chonnel 2 Channel 3 Chonnel 3
_) input pockage i output package | input packoge output packoge
100 “Mcu Real time Channel | Channel |
packoge package) nput package | output package
0o 20) 40 €0 100

{octal addresses)

7Fig. {~4 I/0 Section Exchange Package Areas In SCM

1-24

LASL-AEC - OFFICIAT

[.

10,000
Channel 15 Channei 15 Ch. I6 Ch.16 Ch.I7 Ch.i7
input buffer output buffer input output input output
7000
Channel |13 Channel 13 Channet 14 Channel 14
input buffer output buffer input buffer output buffer
6000
Chonnel {1 Channel 11 Channel 12 Channel (2
input buffer output buffer input buffer output buffer
5000
Chonnel 7 Chonnel 7 Channel 10 Chonnef 10
input buffer output buffer input buffer output buffer
4000
Channel S Channel S Channel 6 Channel 6
input buffer output buffer input buffer output buffer
3000
Chonnel 3 Chonnel 3 Channel 4 Channel 4
input buffer output buffer input buffer output buffer
2000
- Channel | Channel | . Channel 2 Channel 2
input buffer output buffer nput buffer output buffer
1000
Input — Output section exchange packages
o]
0 200 400 600 1000

(octal addresses)

-25

Fig. 1-5 I1/0 Section Buffer Areas In SCM

SELgs
I

k%
QA
&

TN

TN

L d

e

"Real time clock

'CPU programs may be timed precisely by using the CPU clock period
counter. This counter is essentially a real time clock which is
advanced one count each clock period of 27.5 nanoseconds. Since
the clock is advanced synchronously with the program execution, the
program may be timed to an exact number of CPU clock periods.

The CPU clock period counter contains a 17 bit register which can be
read by a CPU program with an 016 instruction. This register con-
tains the lowest order 17 bits of the real time count. An overflow
of the highest order bit in this register sets a real time interrupt
flag. This flag reads as an 18th bit on an 0l6 instructicn. In
addition, this flag causes an exchange jump to the real time exchange
package at absolute address 0020 in SCM.

" Real time interrupt

"The CPU clock period counter causes an interrupt of the CPU program
every 3.6 milliseconds (approx.). This corresponds to the modulus

of the 17 bit register in the clock period counter. This interrupt
causes an exchange jump to absolute address 0020 in SCM, The real
time exchange package at this SCM address executes a CPU program in
monitor mode which advances the count in a 60 bit SCM storage location
to continue the real time clock function of the clock period counter,
This program also tests time limit for the currently active object
program. The real time interrupt flag is cleared at the end of the
execution interval for real time exchange package. This flag is read
as an 18th bit on an 016 instruction in order to avoid erroneous
timing indication where the reading of the clock period counter
coincided with the setting of the interrupt flag. This bit is an
indication that the counter has passed its modulus but the interrupt
to advance the SCM word has not yet occurred.

"External interrupt

The CPU computation may be interrupted from an external source through
the directly connected PPU., Each such PPU has the ability to interrupt
the execution of an object program and call the system monitor by sending
a control message over the associated channel to the CPU. The interrupt
occurs whenever a record flag arrives at the CPU input-output section on
an incoming data link. Interpretation of message content is a function
of the system monitor program,

1-26

LASL-A[C-OH!CiAq

P

_System dead start

The system is initially started through the maintenance control unit
(MCU'). This mechanism is used whenever power is turned on after an
idle period or when the system is restarted after hardware failure,
The MCU is essentially a PPU with specially adapted input-output
channels. This unit is used exclusively for maintenance functions
and is described in part 6 of this manual.

The dead start sequence begins with a deck of binary cards for the

MCU program. These cards are loaded through the MCU card reader and
activate the MCU. The MCU program then dead starts the CPU and all
other PPU in sequence. A bootstrap program is entered directly into
SCM from the MCU. The CPU program is then initiated by the MCU
through the MCU exchange package at absolute address zero in SCM.
This bootstrap program transmits a resident PPU program to all
directly connected PPU to initiate their activity. The system is
then loaded completely from a system library tape associated with
one of the system PPU, This library tape may be any tape in the sys-
tem and may be declared at dead start time through the maintenance
console.

System operation

The operating system software consists of the CPU monitor program,
with its overlays, plus the PPU programs to drive the peripheral
equipment., The operating system forms a software framework in.SCM
and LCM to hold the object programs for execution. Organization of
CPU storage is illustrated in figure 1-6 on the following page. The
I/0 section storage areas are fixed by hardware addressing in SCM.
The remaining areas are stcictly software organizationm.

The resident monitor program resides immediately above the 1/0

section in SCM. This program is a permanent part of the operating
system and is never moved during system execution, This program
handles all I/0 section interrupt requests as well as object program
requests. The remaining portion of SCM beginning at octal address
12,000 and continuing to 200,000 is available for object program
code and data.

The low order addresses in LCM are used for permanent storage of

frequently used programs and overlays. The system tables are kept
here and are directly addressed by the monitor program. Library
routines and compiler code may vary with installation requirements.
Approximately 100,000 octal words of LCM are expected to be used
for these permanent storage requirements.

1-27

)

SCM LCM

200,000 l.?SO,OOCi'L ,.lJ
~N, Y
~ Current
,.,: Object :“
Data ul ~N, Controt Point ~
—~ Y *4 Field Y%
o ~, Contro! Point ~N
» %3 Field a
I A Current pu W 3 Fe ~
) qu Objeci pu
I -~ Program od
o o Control _Poim ~
— 12,000 ~ %2 Field o
‘ . Resident
e 11,000 ;dom?or ~ Control Point ~
rogrom ~N %! Field V)
r 10,000 100,000
o 7000 70,000
Library
Routines
/C) : €000 60,000
I 5000 I/OArEg:'" 50,000
~ 4000 40,000
FORTRAN
i Compiler
r 3000 30,000
~ 2000 20,000
Monitor
. Overiays
1000 10,000
I1/0 exchange System
pockoges Tables
o]
—~ (Octal oddresses)
—~ Fig. |-6 Operating System Storage Allocation
~
/.

—~ 1-28

ASL AEC -omcmq

The remainder of LCM beginning at octal address 100,000 and continuing
to address 1,750,000 is available for object program code and data.
This area is divided into a number of control point fields. Each
control point field contains a single job oriented program code and
data. In addition, each control point contains the necessary control
information for continuity from one program to the next. These areas
vary in size as required for each job., When a job is completed and

a new job is assigned to a control point, the storage areas are read-
justed by moving the data in each control point field through the SCM
as a buffer to a new LCM locationm,

Job execution proceeds through the system in three phases. 1In the

first phase cards are read at an operating station and an input file
is generated on a disk pack, tape unit, or disk file. This input
file may physically reside at the operating station or it may reside
in a central disk file,

‘In the second phase the input file is copied into a control point

field in LCM. If the input file is small the entire file may then
reside in LCM. If the input file is large the first portion of the
file is copied into a buffer area in the control point field. The
control cards in the input file are then interpreted by the monitor
program and the necessary compiler or library routines are read from
outside the LCM if necessary for program execution. When the control
point information is ready for execution the program code is trans-
ferred to SCM. If the program and associated data are too large to
fit entirely in SCM a portion of the data must be retained in LCM
and directly addressed there, This must be done by declaration at
compile time in order to designate certain arrays of data to reside
in LCM for execution.

Only one program at a time is executed in SCM. The entire SCM object

program field may thus be used for each program, Data is read from
the input file in LCM and results are stored in an output file in LCM.
If the amount of input and output data is small the job may be run

to completion in one execution interval, If job execution is delayed
by buffer size or by intermediate file references the program code is
returned to LCM and another control point uses the SCM while buffer
data is transferred to (or from) LCM. The second phase is completed
when the output data has been delivered to the output file buffer in
LCM and this buffer has been emptied onto a disk pack, tape, or disk
file for listing.

'The third phase consists of copying the output file from the magnetic

storage to a printer at the operating station. During this phase the
LCM control point field has been released for another job,

1-29

-

CLASL-ARC-LRETIVIALL

CPU

2

DESCRIPTION ..

"PART 2: CPU DESCRIPTION

“Introduction

This part of the reference manual describes the various units of the
CPU in detail, Each unit is described from the standpoint of its
logical functions and the time relationships between signals arriving
and departing to other units, Electrical pulses travel between units
at approximately 7.5 inches per nanosecond. This is the propagation
rate on twisted pair wires of the type used in interchassis wiring
for the main frame cabinet. This travel time is a major factor in
execution time for the functional units,

All timing within the main frame cabinet is controlled by a single
phase synchronous clock network, This clock has a period of 27.5
nanoseconds and a pulse duration of 8 nanoseconds. The signal on a
clock line would therefore appear as in the waveform below.

_ pe————27.5ns —>|

—){ 8ns]»(—

"CPU clock waveform

The lines which carry the clock timing information from the central
clock pulse source to the individual units of the CPU are all made
of uniform length so that the leading edge of a clock pulse arrives
at all parts of the CPU cabinet at the same time., This network of
timing signals is then the framework for all interunit commuunication,

The individual units in the CPU are composed of "registers' and "static
networks,'" The static networks form the logical combinations necessary
to perform the desired computation., The registers serve as storage
locations between the logical networks. During a clock period informa-
tion moves from registers along transmission paths and through static
networks to the inputs of other registers. The leading edge of a

clock pulse terminates a clock period. At this time the information

is sampled and stored in the registers and a new clock period begins.

2-0

LASL AEC omcmq

CPU registers are generally of the clear/enter type., That is, new

information may be entered in the register at the same instant that
the old information is destroyed, The information in a given register
may move through a static network and return to the same register at
the end of the clock period, This creates two timing limits for the
hardware circuits: a minimum "short path' time, and a maximum "long
path'" time, The short path limit is the same as the clock pulse
duration., This means that there must be no path through a static
network which returns to a register input with less than an 8 nano-
second delay. The long path limit is the same as the clock period,
This means that there must be no path through a static network which
returns to a register with more than 27.5 nanoseconds delay,

Timing charts in this manual are organized around clock period acti