
The IBM 650:
An Appreciation from the Field
DONALD E. KNUTH

Editor’s Note

How does one summarize the personal reminiscences
of another of the giants in the computer field? Don
Knuth is also an artist, of course, as witness his
comments on Poley’s code and his “Art of Computer
Programming. ” Knuth was a tremendous help to me in
preparing this special issue. He wrote to other
participants and encouraged them and me. Here is a
letter he wrote me as this project was starting:

Dear Cuthbert,
When you asked if I might be interested in writing

something about the IBM 650, I thought I might be able to
come up with about two pages worth of stuff. But when I

*began to reminisce, it became clear that I should write
about ten times as much as I had originally thought.

Here is the result; I hope you like it. Tears ran from my
eyes as I (sob) wrote the conclusion!

I suppose it was natural for a person like me to fall in how to use the wondrous card sorter. Meanwhile a
love with his first computer. But there was something strange new machine had been installed across the
special about the IBM 650, something that has pro- hall-it was what our student newspaper called “an
vided the inspiration for much of my life’s work. IBM 650 Univac,” or a “giant brain.” I was fascinated
Somehow this machine was powerful in spite of its to look through the window and see the lights flashing
severe limitations. Somehow it was friendly in spite on its console.
of its primitive man-machine interface. One afternoon George Haynam explained some of

I had just turned 19 when I was offered a part-time the machine’s internal code to a bunch of us freshmen
job helping the statisticians at Case Institute of Tech- who happened to be in the lab. It all sounded myste-
nology. My first task was to draw graphs; but soon I rious to me, but it seemed to make a bit of sense, so I
was given some keypunching duties, and I was taught got hold of a couple of manuals. My first chance to

try the machine came a few weeks later, when one of
Note: The preparation of this paper was supported in part by the -o~~~~-rr~~~ xi the fnakemt+q I w;~s -$ei!igi~e
National Science Foundation grant MCS-83-00984. needed to know the five roots of a particular fifth-
0 1986 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this

degree equation. I decided that it would be fun to
material is granted provided that the copies are not made or distrib- compute the roots by using the 650. More precisely, I
uted for direct commercial advantage, the AFIPS copyright notice had been reading the manual for the Wolontis-Bell
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation

Labs Interpreter [see Technical Newsletter No. 11 in
of Information Processing Societies, Inc. To copy otherwise, or to this issue], and I decided that polynomial root finding
republish, requires specific permission. would be a good test case.
Author’s Address: Computer Science Department, Stanford Univer- A program for the Bell System (as we called it)
sity, Stanford, CA 94305.
Categories and Subject Descriptors: C.l.l [Processor Architec- consisted of IO-digit numbers like
tures], Single Data Stream Architectures; K.2 [History of Com-
putingj-hardware, IBM 650, people, RUNCIBLE, SOAP, software. 1 271 314 577
General Terms: Design, Languages. Additional Key Words and
Phrases: education. which meant “Add the (floating-point) number in
0 1986 AFIPS 0164-l 239/86/010050-055$01 .OO/OO location 271 to the (floating-point) number in location

50 l Annals of the History of Computing, Volume 8, Number 1, January 1986

314 and put the result in location 577.” I found a book
that gave formulas for the roots of a general fourth-
degree equation; so it was easy to factor a general real
polynomial of degree 5 by first doing a simpleminded
search for a real root r, then dividing by x - r and
plugging the result into the formulas for quartics.

once, and it was frequently possible to make good use
of the side effects. For example, the instruction

60 1234 1009

I realize now how lucky I was to have had such a
good first encounter with computers. The polynomial
problem was well matched to my mathematical knowl-
edge and interests, and I had a chance for hands-on
experience, pushing buttons on the machine and
seeing it punch the cards containing the answers.
Furthermore, the Bell language was an easy way to
learn the notion of a program that a machine could
carry out. I’ve forgotten the name of the fratern.ity
brother who asked me to solve this particular problem,
but I bet he’s kicking himself now for not having done
it himself.

meant, “Load the contents of location 1234 into the
distributor; put it also into the upper accumulator; set
the lower accumulator to zero; and then go to location
1009 for the next instruction.” All four of these actions
were often useful in the subsequent program steps.

In fact, I usually got by with only 34 of the 44
opcodes, because I seldom had a good application for
the ten “branch on distributor digit equal to 8” com-
mands. After 25 years I still can remember the numeric
codes for most of the remaining 34 ops; and I’ll never
forget the fact that addresses 8001, 8002, and 8003
referred to the distributor, lower, and upper accumu-
lator registers.

I often wonder whether it might not still be best to
teach programming to novices by starting with a nu-
meric language like that of the Bell interpreter, in-
stead of an algebraic language like BASIC or LOGO. I
think a small child can understand machinelike lan-
guage better than an algebraic language. But I know
that such ideas are now considered out of date, and I
suppose I’m being an old fogy.

I learned a few years ago that the Bell interpreter
had been inspired by John Backus’s Speedcoding sys-
tem for the IBM 701 (Backus 1954). During my stu-
dent days I had never heard of the 701, and this, I
think, leads to an important point: The IBM 650 was
the first computer to be manufactured in really large
quantities. Therefore the number of people in the
world who knew about ,programming increased by an
order of magnitude. Most of the world’s programmers
at that particular time knew only about the 650, and
were unaware of the already extensive history of com-
puter developments in other countries and on other
machines. We can still see this phenomenon occurring
today, as the number of programmers continues to
grow rapidly.

The 650’s “one-plus-one address” code, in which
each instruction designated the location of its succes-
sor (and branch instructions designated both succes-
sors), has been rejected by modern machine designers.
But it was in fact extremely effective, because it
allowed convenient subroutine linkage and because it
became easy to execute instructions from registers. A
one-plus-one scheme was important, of course, on a
machine without efficient access to all words of mem-
ory, because instructions could be located in “opti-
mum” places on the magnetic drum.

When I did finally learn about the existence of the
IBM 701, it had been improved to the 709, and it was
shortly to become the 7090; but I must confess that I
stiI1 liked my good old 650 a lot better. The 650 had
only 44 operation codes (IBM 1955) [see “Optimum
Programming” in this issue], while the 709 had more
than 200; yet I never enjoyed coding for the 709,
because I never seemed to be able to write short and
elegant programs for it-the opcodes didn’t blend
together especially well. By contrast, it was somehow
quite easy and pleasant to do complex things on the
650 with very few instructions. Most of the commands
in the 650’s repertoire accomplished several things at

The incredible thing about the 650 was that we
could do so many things with it, although it was three
orders of magnitude slower than today’s computers,
and it had three orders of magnitude less memory.
The memory-space limitation was more important
than anything else during my first year of program-
ming. I had to learn how to pack data and how to use
subroutines in order to save space. For example, my
first large program was a tic-tat-toe routine that
“learned” to play by remembering the relative desir-
ability or undesirability of each position that it had
ever encountered. The hardest part was figuring out
how to keep one digit of memory for each possible
configuration of the board, board positions that were
equivalent under rotation or reflection were consid-
ered to be identical.

The first program that I ever wrote in machine
language still stands out in my mind. It was June 1957,
and my freshman year at Case had just ended. I
decided to hang around Cleveland instead of going
home, and I was allowed to stay up all night playing
with the computer by myself. So I decided to write a
program that would find prime factors. The idea was
that a person could set up a IO-digit number in the
console switches and start my routine, which would

Annals of the History of Computing, Volume 8, Number 1, January 1986 l 51

D. E. Knuth - Appreciation from the Field

D. E. Knuth - Appreciation from the Field

punch the corresponding prime factors on a card and tat-toe by finding three X’S in a row: I called that step
stop; then another number could be set up and fac- BINGO.
tored in the same way, etc. I believe my first draft I regret to report that I’ve recently looked again at
program was about 80 instructions long, but I didn’t my prime factors and tic-tat-toe programs, and they
save it, so I can’t be sure. Anyway, I wrote it as a are entirely free of any comments or documentation.
sequence of about 80 decimal numbers, and punched Shortly afterward I got hold of the SOAP II manual
it onto cards-much as I had done with my previous (Poley 1957), which impressed me greatly and had an
(Bell system) program for root-finding. Then I sat enormous influence on my subsequent career. This
down at the console of the machine and began to learn manual included the entire listing of SOAP II in its
how to debug, using the half-cycle switch to step own language, and the program was absolutely beau-
through the instructions slowly, or using the address- tiful. Reading Poley’s code was like listening to a
stop switch to discover when the program used partic- symphony; I wanted to be able to compose programs
ular locations for data or instructions. The 650 console like that. I also learned several new techniques, such
was excellent for on-line debugging, and nobody else as hashing, from this code. My next project was to
was using the machine at that time of night. write a modification of SOAP II that would have worked

Well, my program was riddled with errors, and I on a 650 with only 1000 words of memory. (I knew
removed them one by one during the next two weeks. that such machines were sold, but I never actually saw
Besides the “obvious” mistakes, I hadn’t realized at one.) Then I spent the rest of the summer writing
first that a lo-digit number can have as many as 33 SOAP III (Knuth 1958), which went the other way by
prime factors. Only eight numbers could be punched adding additional features for enhanced 650s that had
on a card, so I would have to punch up to five cards. index registers and/or floating-point hardware.
(My original program had only thought of punching SOAP III was my introduction to software writing.
one card.) Then I had to clear the memory between In particular, I learned about what is now called
runs so that spurious data from a previous factoriza- “creeping featurism,” where each of my friends would
tion wouldn’t appear on the next one, and so on. You suggest different things they wanted in an assembler.
know the story; we all make the same mistakes. I was I probably tried to accommodate them all, since SOAP

lucky enough to have the opportunity to make lots of III had 24 pseudo-operations that were not in SOAP II.
mistakes right from the beginning, and to diagnose I also left 150 memory locations available for user-
them all by myself, sitting at the machine. All the defined pseudo-operations. I put liberal comments
facts I needed were available to me, because I was into the code, having learned that lesson at last.
working in machine language, and no operating system Our lab received an amazing program from Carnegie
or other software was interposing itself betwen me Tech during the summer of 1957, namely the famous
and what I needed to know. Debugging took a long IT compiler by Perlis and Smith (1957). IT took alge-
time at first, but I think I had the machine to myself braic statements as input, then computed awhile, and
about six hours every night. Finally I arrived at a punched SOAP programs as output. I had no idea how
program that was satisfactory; I vaguely recall that it such a feat would be possible, but I got hold of the
took about 11 minutes to determine that the number program listing at the end of the summer, and I read
9999999967 was prime, although at one point this it while vacationing with my parents at a beach resort
particular test case had taken 17 minutes. on Lake Erie. This program was not beautifully writ-

By this time my program had grown to 140 words ten like Poley’s, but it accomplished remarkable
long, and I think I had changed each of the instruc- things, so I naturally had an urge to rewrite everything
tions at least twice. I had also learned about the SOAP in the style of 650 coding that I had just learned. Bill
assembly language (Poley and Mitchell 1955), so my Lynch and I began this project late in 1957, under the
final program was expressed in symbolic form; I had direction of Fred Way III and George Haynam. We
been weaned away from numeric machine language first called our program Compiler III, but it eventually
during those two weeks. The success of this program became known as RUNCIBLE (Knuth 19593; Case
gave me the confidence to try another (which con- 1959). The language was a superset of Perlis’s IT, and
verted a given number on the console switches to a we worked very hard to squeeze in as many new
specified radix); then I was ready for tic-tat-toe. features as we could.

The SOAP language allowed symbols to be up to five Somehow it was possible to cram a complex com-
letters long, and I recall spending a lot of time trying piler into the 2000 words of the 650. Yet when we
to come up with suitable names. It was a great moment were done, I don’t think we could have gotten by with
when I hit on the right term for the program step that only 1999 words, because we had spent considerable
was to be executed when the computer had won attic- time finding every last bit of space-by using terrible

52 l Annals of the History of Computing, Volume 8, Number 1, January 1986

D. E. Knuth l Appreciation from the Field

tricks so that small changes to one part of our code would choose drum locations so that at least one
would usually cause some apparently unrelated part reference to that location would involve no delay. Such
to blow up. I guess Parkinson’s Law applies to pro- optimization was much better than random placement
grams as well as to organizations; we kept adding of instructions; I had (for fun) experimented with
features until the space was tilled. SHOAP, a “Symbolic Horribly Optimizing Assembly

RUNCIBLE had four versions called AX, AY, BX, Program” that used the algorithm of SOAP in reverse
and BY, where X stood for object code that invoked so that at least one reference to each location would
subroutines for floating-point arithmetic, while Y lead to a 49-word-time delay. By adding seven cards
stood for object code that used the 650’s optional to the normal SOAP program deck, you had SHOAP,
floating-point hardware; A stood for SOAP output, which produced extremely slow programs. Conversely,
while B stood for directly loadable machine-language it was possible to improve significantly on SOAP's
programs punched five per card (and bypassing the performance by choosing locations carefully by hand
need for assembly). It turned out that the X version and rewriting the program when necessary, as I discuss
became a Y version by replacing exactly 95 instruc- in Knuth (1961); the Bell interpretive system had
tions by 95 others; similarly, the A version became a been hand-optimized in a particularly beautiful way,
B version by replacing exactly 406 instructions by 406 which was quite an inspiration to me. In 1958, I wrote
others. If we discovered a way to save one line of code HAND SOAP, which permitted me to hand-optimize the
in, say, the A version, we looked closely at the B locations without giving up the advantage of symbolic
version until we had saved a line there, too. assembly. We used HAND SOAP to prepare the run-

We called the A version “two-pass operation,” while time system for RUNCIBLE; SuperSoap was later de-
the B version was called “one-pass.” At the end of the signed to incorporate similar ideas into a full-fledged
summer I hacked together a “zero-pass” version that assembler.
took one less pass than B, since it loaded machine Somebody in 1958 or so circulated a joke about a
instructions directly into their memory locations in- program called RINSO, a “Real Ingenious New Sym-
stead of punching anything on cards. For this I had to bolic Optimizer”; we were carried away by acronyms
eliminate the matrix feature of IT; that is, doubly in those days. For some reason there has been an
subscripted arrays were not permitted in “RUNCIBLE intimate relation between cleaning agents and soft-
zero.” My main goal was to prove that 2000 words of ware that I have written through the years, even
memory were not too few for a compile-load-and-go though my programs haven’t always been very clean.
system, because somebody (Perlis?) had reportedly For example, John McNeley and I devised a system
said that it would be impossible. called SOL in 1963 (Knuth and McNeley 1964), and

By 1959 our lab had acquired the ultimate in 650 when I visited Norway a few years later I learned that
upgrades: we had a full 653 system (IBM 1959) in- SOL is the name of a Norwegian laundry detergent.
eluding index registers, floating-point hardware, and Even more amazing was that my MIXAL assembler
60 whole new words of core memory! It was heavenly. language (Knuth 1968) turned out to have the same
Besides this, we put our printer on-line (so that list- name as a popular detergent in Yugoslavia-although
ings didn’t have to be made via cards), and we acquired I had had no idea that MIXAL would even be a word in
a RAMAC disk storage, as well as several tape units. any language! More recently, I have learned that TEX

At this point it was desirable to have a new assembly is a brand name for toilet paper in Greece . . . but I
program so that we would make proper use of the new am digressing.
equipment. I therefore wrote SuperSoap (Knuth My preface to the SuperSoap manual (Knuth
195%), a major improvement over SOAP III. I'm still 1959a) gives a glimpse into the mood that prevailed
pretty proud of SuperSoap, because it introduced some at IBM 650 sites during the late 1950s:
good ways of dealing with programs that would be Soap 3 was written attempting to get as many features
loaded into the drum but executed from core, and into 2000 memory locations as possible, but SuperSoap
because I had the courage to remove some features of was written under a different philosophy; speed was the
SOAP III that didn’t work as well as planned. Further- prime consideration, and storage space was conserved

more, SuperSoap introduced what I think was the best only when speed was not appreciably decreased. A factor

approach to the problem of “optimizing” the drum of roughly 3:l in running time over Soap 3 has thus been

locations of data and instructions for the 650; it was obtained. . . . Some of the pseudo-op rules have become

a combination of machine and hand methods (Knuth
more logical thanks to Carnegie Tech’s TASS [a
competing assembler, written by Art Evans]. . . . Once

1961). again much gratitude must be given to the Case
The name SOAP stood for Symbolic Optimal Assem- Computing Center for letting me chew up thousands of

bly Program, and optimal meant that the machine cards.

Anna!s of the History of Computing, Volume 8, Number 1, January 1986 l 53

D. E. Knuth - Appreciation from the Field

On rereading SuperSoap, I find most of it reasonably brain with advice about how to write better software;
similar to today’s assemblers except in one significant or perhaps it was trying to kill me.
respect: We assumed in 1959 that the computer lab By 1959 I had developed a pretty good style of 650
would be an “open-shop” operation in which any stu- coding, and I must confess also being addicted to
dent could come in and take personal charge of the tricks. One of the competitions among students was
machines while running a program. Therefore the to do as much as possible with programs that would
error messages in SuperSoap consisted of machine fit on a single card-which had room for only eight
halts, and my manual gave the following advice for instructions. One of the unsolved problems was to
error recovery: take the lo-digit number on the console and to reverse

SuperSoap believes that the best place to catch errors is its digits from left to right, then display the answer
during assembly, and so it will stop if it finds something and stop; nobody could figure out how to do this on a
amiss. . . . The offending card is the fourth-last card out single card. But one day I proudly marched up to the
if you clear the read feed. . . . To restart, correct the bad machine and made a demonstration: I read in a card,
card, . . . reinsert it in the deck, and hit Program Start. then dialed the number 0123456789 on the console,

There was a keypunch right next to the console, so and started the machine. Sure enough, it stopped,
this was probably the most efficient way to get the job displaying the number 9876543210. Everybody ap-
done in those days. plauded. I didn’t explain until later that my card would

Cards, cards, cards; we used tens of thousands each display the number 9876543210 regardless of what
day. The run-time system of RUNCIBLE had a debug- number appeared on the console switches.
ging feature whereby you could turn the console knobs There’s more to the story. Our machine had an
and get a card punched for every statement of your extra set of console switches, which were called regis-
program that was being executed; or you could even ter 8004. (As far as I know, Case’s 650 was unique
trace every machine-language operation, with one card with this particular feature.) It turned out that nine
per instruction. The 533 Card Read Punch could pro- instructions on an extended 650 were sufficient to
duce 100 cards per minute, and it often did. reverse the digits of a number, and the ninth instruc-

One of the nice things about the 650 and its periph- tion could be put into one of the sets of console
erals was their robustness. Our computing center staff switches. Therefore I was able to solve the problem
could safely let random students work all of the IBM without cheating (see the appendix following).
machines, changing plugboard control panels, clearing The dirtiest trick I ever discovered for the extended
the punch hopper, mounting tapes, fixing card jams, 650 was to use the instruction “shift and count by
etc., without worrying that the machines would be 9004” in a certain context. This one instruction caused
ruined. (This was emphatically not the case for the four things to happen simultaneously: (1) the upper
Univac equipment in another part of our laboratory; accumulator was shifted left by four digits; (2) the
those machines had been designed with the assump- lower accumulator was set equal to 10; (3) the core
tion of a trained operator in attendance, and I tended memory “timing ring” was set to 9004; and (4) the
to break them accidentally every time I went nearby. overflow indicator was turned on. I had an application
If all computers had been like those, a lot of people in which all four of those things were useful.
like me would never have gotten a good start on the SuperSoap was the last “system” software I wrote
use of computers, because we would never have been for the 650, although I wrote many application pro-
allowed to touch them.) During all my experience with grams during the following year. Then I graduated,
the 650 I can remember only two instances where the and began to tackle other machines. My favorite com-
design could perhaps have been slightly more fool- puter for the next five years became the Burroughs
proof: Once I discovered a special case of the divide 220, which was another joy to use.
operation that put our machine into an infinite loop, A number of my classmates and co-workers at Case
restartable only by hitting Power Off. (Later I visited later became leading figures in other computing cen-
Carnegie Tech and tried it on their 650; it blew the ters; they include Bill Lynch, Mel Conway, Joe Spe-
fuse! Ah yes, those were the joys of student life.) The roni, Gilbert Steil, Jack Alanen, Mike Harrison, and
other time was when one of the tiny console display many others. Our incubation period with the 650 was
lights was broken; the glass was gone and two little the foundation of our later work. And the same is true
wires were sticking out. I changed the display so that for thousands of other people (such as Bob Floyd) who
this particular light was off, then tried to pull out the became intimately familiar with 650s at other com-
broken bulb by grabbing onto what looked like a dead puter centers.
filament. This gave me quite a jolt, and I was sick for What was it about the 650 that made our experi-
a day or so. Perhaps the machine was trying to fill my ences such a good foundation for our later careers?

54 l Annals of the History of Computing, Volume 8, Number 1, January 1986

D. E. Knuth l Appreciation from the Field

Surely I wouldn’t recommend that today’s software be
produced as we did the job then; we would never
advance very far past the rudimentary levels achieved
in those days, if we remained rooted in that method-
ology. But growing up with the 650 gave us valuable
intuitions about what is easy for a machine to do and
what is hard. It was a great machine on which to learn
about machines. We had a machine organization that
was rudimentary but pleasant to use; and we had
program masterpieces like the Bell interpreter and
Poley’s assembler, as examples of excellent style.

We were forced to think and to develop our abilities
to make mental abstractions about control structures;
these experiences seem to have made us better able to
do complex things later, when the task became easier.
I’m reminded that Edsger Dijkstra began his program-
ming experience in a similar way (but on a different
computer); he and Zonneveld wrote the first ALGOL 60
compiler in a strictly numeric machine language.

This article about the 650 has turned out to be
largely autobiographical. The fact is, it’s impossible
for me to write about that wonderful machine without
writing about myself. We were very close. (One night
I missed a date with my wife-to-be, because I was so
engrossed in debugging that I had forgotten all about
the time. I’ll never live that down.) The 650 provided
me with solid instruction in the art of computer pro-
gramming. It was directly related to the topics of the
first two technical articles that I ever submitted for
publication (Knuth 1959b; 1961). Therefore it’s not at
all surprising that I decided in 1967 to dedicate my
books on computer programming

“ . . * to the Type 650 computer once installed‘at
Case Institute of Technology,

in remembrance of many pleasant evenings.”

REFERENCES

Backus, J. W. 1954. The IBM Speedcoding system. J. ACM
1, pp: 4-6.

Case Comnuter Center Staff. March 1959. “Runcible I.”
Case Institute of Technology Computer Center Reports,
Series 5, Vol. 1, 6’7 pp.

IBM. June 1955. “IBM 650 Data-Processing System, Man-
ual of Operation.” IBM Corporation, Form 22-6060-1,111
pp. (This was described as a “major revision” of forms 22-
6060-0 and 22-6149-0, copyright 1953 and 1955.)

IBM. June 1959. “Immediate Access Storage, Indexing Reg-
isters, Automatic Floating-Decimal Arithmetic, and Mag-
netic Tape.” IBM 650 Data Processing Bulletin, IBM
Corporation, Form G24-5003-0,48 pp.

Knuth, Donald E. February 1958. “Case SOAP III.” Case
Institute of Technology Computer Center Reports, Series
4, Vol. 1, 28 pp.

Change storage entry switches to 60 8004 9001+.
Now the program is satisfactorily initialized.

Set 8004 to any number. Press Program Start. When the
machine stops, the number will appear with its digits reading
from right to left instead of from left to right.
You may reset 8004 and depress Program Start again as
often as you wish.

The card: 40 9007 8000
20 9009 9002
65 8003 9003
14 9004 9005
00 0000 0010
10 9009 9006
50 1000 9000
19 9004 9001

Annals of the History of Computing, Volume 8, Number 1, January 1986 l 55

Knuth, Donald E. August 1959. “SuperSoap.” Case Institute
of Technology Computer Center Reports, Series 4, Vol. 2,
55 PP.

Knuth, Donald E. November 1959. RUNCIBLE-Algebraic
translation on a limited computer. Comm. ACM 2, 11, pp.
18-21.

Knuth, Donald E. 1961. Minimizing drum latencv time. J.
ACM 8, pp. 119-150.

Knuth, Donald E. 1968. The Art of Computer Programming.
Vol. 1, Fundamental Algorithms, Reading, Mass., Addi-
son-Wesley, xxii + 634 pp.

Knuth, Donald E., and J. L. McNeley. 1964. SOL-A sym-
bolic language for general-purpose systems simulation.
IEEE Trans. Electronic Computers EC-13, pp. 401-414.

Perlis, A. J., and J. W. Smith. April 1957. “A Mathematical
Language Compiler.” In Automatic Coding, Philadelphia,
Franklin Institute Monograph No. 3, pp. 87-102. (For
further information, see Luis Trabb Pardo and Donald E.
Knuth, “The Early Development of Programming Lan-
guages,” in N. Metropolis et al. (eds.), A History of Com-
puting in the Twentieth Century, New York, Academic
Press, 1980, pp. 197-273.)

Poley, Stan. 1957. “SOAP II Programmer’s Reference Man-
ual.” IBM Corporation, Form 32-7646, 94 pp.

Poley, S., and G. Mitchell. November 1955. “Symbolic Op-
timum Assembly Programming (SOAP).” 650 Program-
ming Bulletin 1, IBM Corporation, Form 22-6285-1,4 pp.

Wolontis, V. M. March 1956. A complete floating-decimal
interpretive system for the IBM 650 magnetic drum cal-
culator. Technical Newsletter No. 11, IBM Applied Science
Division, 35 pp.

APPENDIX

Number Perverter Demonstration Card (8/15/59)
Instructions for use:

Prepare console as follows:
Storage Entry 70 9000 9001+
Half Cycle RUN
Address 8000
Control ADDRESS STOP
Display UPPER ACCUM

Place Perversion Card in read hopper.
Depress Computer Reset, Program Start.
Depress START and END OF FILE simultaneously on

card reader.
The program should now be stopped with 8000 in the

Address Lights.

