CHAPTER 3
Switching Networks

‘Before proceeding to the arithmetic operations specifically, this chapter
will be devoted to switching networks in general. As will be illustrated in
subsequent chapters, arithmetic operations are performed in calculators
largely through the assembling of the calculator components to form switching
networks of various descriptions. Also, switching networks have appllcation
in parts of a calculator other than the part which does the actual adding, multi-
plying and other operations. In particular, the control portion of a calculator
is comprised almost entirely of switching networks. Further, switching net-
works are of interest 1h many machines and devices such as elevator controls,
telephone switchboards, code and cipher machines, and rallway signalling sys-
tems, which are not calculators in the usual sense of the word at all,

In broad terms a switching network is any digital device to which input
signals may be applied and from which output signals may be obtained that are
some prescribed function of the Input signals, In the examples to be described
it will be assumed that the signals are all two-valued; that is, on a given signal
line, a signal will either be present or will not be present. In other words, a
signal can be considered as having the value, 1 or 0, according to whether it is
in existence or not. There is no inherent reason why multi-valued signals could
not be used, but very little practical use has been made of them because of the
difficulties in designing suitable physical components, Reference will be made
both to steady-state and pulse-type signals, In most cases either type of signals
may be assumed; those instances which require one kind of signal or the other-
will be apparent from the text from the nature of the switching network,

Some of the most elementary networks were discussed in the previous
chapter. More complicated, In fact even very complicated, switching networks
usually may be quite easily assembled in a stralghtforward manner, The diffi-
cult part of the task is finding an arrangement which has the minimum or a
reasonable number of components or which meets some other requirement such
as speed of operation. Frequently, further complications are introduced which
might not be apparent from the functional block diagrams contalning only the
switching elements, One such complication is encountered when diodes are used.
When a signal passes through a succession of alternate "and" and Yor" switches
its amplitude rapidly diminishes. If the circuits are properly designed, simple
cathode follower circuits may be used at intermediate points to produce the re~
quired current gain, With a large number of stages, voltage amplification as
well as current amplifiddtion will be required. Of course, the signal amplifi-
cation equipment must be considered as well as switching elements themselves.
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Even with components which require no separate amplifiers two or more dif-
ferent types of components may be used, and then it is necessary to find the
lowest possible "weighted count® in the various possible switching configura=-
tions because the different types may have variations in cost or desirability.

In spite of the virtual impossibility of finding a general solution to network
problems which must include engineering considerations, a few alds and tricks
are known., Some of the more useful procedures for finding suitable switching
networks will be pointed out,

Elemental Form of Network., Any switching function involving a single
output signal which is a function of a set of simultaneously applied input signals
may be reduced to an "elemental form"., Here, the term, elemental form,
means a Boolean algebra expression (or the equivalent physical circult) where
the desired result is obtained by a set of "and" terms combined by an "or" re-
lationship, where each "and" term contains all of the variables, It 1s possible
to find this form in any given instance merely by noting those combinations of
input signals for which an output signal is deslred.

For example, with three input signals, A, B, and C, there are eight and
only eight possible input combinations, Each input combination may be repre-
sented by an "and" term such as ABC, which has the meaning that a signal is
applied to input B but not to inputs A or C. Any given switching function may
be specified by a listing of the combinations of input signals which will produce
an output signal. Since the listing implies an "or" relationship, it follows that
any switching function may be represented by an expression of the form,

ABC + ABC + ABC doee,

where only those terms which are to yield an output signal are included, Of
course, when a switching function is encountered in a practical problem, it

may not appear in this elemental form, but through Boolean algebra manipula-
tions it is not difficult to alter the representation to fit this form, For instance,

the elemental form of the function (AB + C) may be found by proceeding through
the following steps.

(AB+C)=ABC

(A+B)C

"

ABC + ABC + ABC
Through-a study of the elemental forms of switching networks the total
number of different switching functions may be determined. In the case of

only one input variable, the networks are all trivial; neyertheless, there are
four of them as represented by the expressions, 0, A, A and A + A, The
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first is an open circuit, the second is a straight connection between the input and
output, the third is an inverter and the last is a steady output signal independent

of the input. With two input variables there are sixteen different switching func-
tions as follows:

0 KE+KB+A§
AB AB + AB + AB
AB AB + AB + AB
AB AB + AB + AB
AB AB + AB + AB + AB
AB + AB

AB + AB

AB + AB

AB + AB

AB + AB

AB + AB

As will be expldined shortiy, most of these expressions can be simplified con-
siderably, With three input variables a total of 256 different switching functions
are possible although many of them are merely rearrangements of the variables,

~ In general, the number of switching functions may be found by noting that
the total number of different input combinations is equal to ZN, where N is the
number of input variables. It may be desired to have an output signal for any
set of Input combinations, Therefore, each of the sets can be represented by
& binary number of 2N digits with a 1 or a 0 in the number meaning that the
corresponding input combination causes or does not cause, respectively, an
output signal. Since there is a one-to-one correspondence between the sets
and the binary numbers, the total number of switching combinations is equal
to 2 ralsed to the oNth power.

Simplifying the Elemental Form, The elemental form of representation of
a switching function does not, of course, necessarily yield a representation of
the physical switching circuit which is most economical in terms of the number
of components required, In fact, in the wide majority of instances, the circuil
may be simplified. In this section only those circuit configurations which in-
yolve a set of "and" switches combined by an "or" switch will be considered.

il



N
\

Wher hunting for unnecessary compenents to remove from an *and-to-or"
switching circuit (such as a circuit in its elemental form) a good way to start
is to look for combinations of variables in any of the forms, XY + XY, X+ XY,
or X + XY because each of these expressions can be reduced as follows:

X¥+XY=X(Y+¥)=X
X+XY =X(1+Y)=X

X+ XY = (X+f) (X+¥)=X+Y.

As an 1llustration of the use of these relationships, consider the switching
function, AB + AB + AB, which is found in the list of the sixieen two-input
functions, The first two of the three terms In the expression are of the type - -
represented by the first equation above, and the function may therefore be re-
duced to & + AB, which in turn may be reduced to K + B as determined by the
third equation, Through the use of the three equations it may be found quickly
that the entire list of sixteen two-input swiiching functions may be reduced to
the following list of relatively simple expressions.

0

AB Aw B
AB 1+B-
AB A+B
AB A+B
A

B

AB + AB

AB + AB

B

A

When working with switching functions involving three or more input
variables the three equations presented in the previous paragraph can be re- -
presented in a more general manner,

HX )g(¥ ) + HX)g(¥ ) = #(Xp)
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() + KXY ) = £X,)
#(Xn) + Endg(¥m) = KXp) + oY)

Here, Xn-sigrdﬂes a set, X, of n variables, and Y, signifies a set, ¥, of m
variables, It is not a requirement that any given variable appear in only one
set; it may appear in both sets. A notation such as f(Xp) means any Boolean
algebra function of X,. In this section most of the functions are limited to
simple "and® combinations of the variables, but if should be understood that
this limitation is not general,

As another example of the procedure, consider the function,

ABC + ABC + ABCD.

If the first two terms of the expression are examined, it will be observed
that AC is common to both of them and may be taken as a single variable

or function, Therefore, the expression reducesto AC+ ABCD, Further
simplification cannot be achieved through direct application of any of the
three equations, but if the common variable, A, is factored to yield

A(C + BTD), then BD may be taken as a single variable, The resulting ex-
pression is A(C + BD) = AC + ABD, Inthis, as in most other examples,
several different sequences of steps could haye been used to achieve the
same result,

Sometimes when simplifying a switching function it is easier, at least
from the standpoint of visualization, to use a given term more than once in
the process, For example:

ABC + ABG + ABC = ABC + AEC + ABC + ABC,
The third term in the left-hand side of the equation is recorded twice in the
right-hand side (possible because X = X+ X), Then, by considering the first

and third terms together and the second and fourth terms together it is found
that the expression is equivalent to BC + AC,

A more striking example of the power of the three generalized simplifying
equations is illustrated in the following example.

(AB+C) + (AB + C){CD+A)=(AB+C)+ (CD+ A)
=A+C

The simplified form is found very quickly by considering the expressions
within the brackets as individual variables, Without the generalized equa~-
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tions, a process somewhat as follows would be necessary.
(AB+C)+{AB+CHCD + A) = (AB+ C) + ABC(CD + A)
= (AB+C)+ (A+B)C (CD+A)
= (AB+C)+ABC
= A(B+BC)+C
= A(B+ G)+C
= AB+AC+C
= AB+A+C
=A+C
A Difficulty and Its Solution, Occasionally switching functions of the
simple "and-to-or* variety contain superfluous terms which cannot be de=
tected by the methods described in the preyious section, An example is
A B+ BC + AC, where the third term, AC, is superfluous and may be
dropped without altering the value of the function,

' One way to show that the term is superfluous is through multiplying it
by B + B, which is equal to 1 and therefore does not change its value,

AB+BC+AC= AB+BC+AC(B+B)

AB+BC+ABC+ ABC

= ABL+O)+ 1+ ABC

= AB+BC
While the steps illustrated here may seem perfectly straightforward, It is
sometimes quite puzzling to find the proper steps when an example of this
type is encountered for the first time. Experience and practice is a great
help in knowing which steps of the multitude that are possible are most lkely
to be frultful in finding simplifications in the switching function, A study of

the following additional three examples will aid in discerning patterns that
are likely to signify superfluous terms.

AB+BC+AC = AB+BC
KE+BE+7\5= AB+BC
AB+BC4+AC = AB4+BC
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By using a "testing" process superfluous terms can be detected in a positive
manner, To test a given term, the values of the input variables are observed
which cause an output signal because of the term being tested, These values of
the variables are then inserted in all of the other terms, and if it is found that
an output signal is always created through at least one other term, it is known
that the term being tested is superfluous, The process will be illustrated by
testing the term A C in the previous example of AB+ BC + AC, For AC to
cause an output signal (that is, to cause the value of the switching function to
be 1) it must be that A =1 and C = 0, But in this case the first two terms
yield (1)B + B(1), which is always equal to 1, Therefore, the AC is superfluous.
By applying this test to all terms in an "and-to-or"™ switching function, it is
possible to find with certainty any that may be superfluous,

Another 1llustrative example is the switching function,
AB+BC+CA+AB+BC+CA,
A test on any one of the six terms will indicate that it is superfluous, The re-
sult of testing the first term (set A= 1 and B = Q) is

0+ 0+ 0+(1)C+E(1)=1,

and analogous results are obtained from tests of any one of the other terms,
However, it should not be concluded that all terms are superfluous and that
the function is equivalent to 0, After testing one term and finding that it is
superfluous, it should be eliminated before testing another, In particular
after eliminating the first term, the second or third terms will be found
superfluous, but the last three will not be superfluous, It happens that in

this example the switching function may be simplified to any one of two equiva~
lent functions which are:

AB+BC+CA=AB+BC+CA.,

Although individual variables which are superfluous can usually be found
by methods described previously, the testing procedure may be used for them
also, A slight modification in the procedure is required. For example, in
the switching function, AB + ABC the appearance of B in the second term is
superfluous, To test this particular appearance of the variable it must be
observed that it will contribute to the output only when A=1and C= 1,

But then the expression is equivalent to (1}{B) + (1) B(1) = 1, Since the value
of the expression is always 1 when A = 1 and C = 1, the B factor in the second
term may beeliminated,

As another example consider the switching function, AB+ ABC + AB,
The appearance of A in the second term or the appearance of B in the seeond
term, but not both, is superfluous as may be determined by testing. The test
for A in the second term is to note that B = 0 and C = 1 when this term con-
tributes to the outpwt. Since in this case the switching function is 0+ A(1)(1) + A(1),
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which is always 1, it follows that the A in the second term is not needed, The
same result could have been found with previously described methods by factor-
ing B out of the second and third terms as a first step, By similar procedures
it may be shown that B in the secand term could be eliminated instead of A.

Another Difficulty and Its Solution, Im all of the examples described pre-
viously the simplifications were accomplished through eliminating unnecessary
variables or terms in the expression, Occasionally, when applying the methods
which have been described it is possible to proceed into a "trap". The trap is
a situation where an expression is found which contains no superfluous variables
or terms, as can be proven by testing, but yet is not the simplest ®and~-to-or®
expression which represents the desired switching function,

An example is the following switching function, which when represented in
its elementary form is _

ABG+ABC+ABC+ ABC+ABC+ABC,

By grouping first and fifth, the second and fourth, the first and sixth, and the
third and fourth terms in pairs the function may be simplified to:

AB+AB+AC+AC,
which contains no superfluous variables or terms. Yet, it is possible to form
the function with less terms than this, If the terms in the original expression
had been grouped with the first and fifth, the second and sixth, and the third
and fourth terms in pairs, the result would have been

AB + BC + CA,
Although a criterion for simplicity is sometimes difficult to define, by almost
any conceivable standards,this expression is simpler than the previous one,
It may be recognized that this example is substantially the same as a previous

one; by a different grouping of the original terms the different, but equivalent
expression,

AB+BC+C A,
could have been obtained.

What 1S needed in avoiding traps of the type just described is a systematic
way of finding all possible combinations of simplified forms so that the most
desirable one may be selected, One such system involves expanding the func-
tion to its elemental form (if it is not already In its elemental form), Then,
through repeated applications of the formula, XY +XY¥ =X, Ina systematic
manner ell™basic® terms in the expression may be found, where a hesic term
is any correct term which contains no_superfluous variables, In the previous
example a total of six basic terms (AB, ete, ) are found by pairing the terms
of the elemental form in various ways. Actually, it is not known that these
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terms are basic until each of them has been compared with all others and it has
been determined that further reductions cannct be made, After finding all basic
terms a table is made that indicates which of them are contained in each term
in the elemental form, For the example cited the table is shown in Table III-1,
where an x indicates that the basic term listed in the corresponding row is
contained in the elemental term at the top of the corresponding column,

ABC ABC ABC ABC ABC ABC

B
oo}

X X

a &
MM
P4

M

we)

CA B X
Ga X X
Table II~1, Table for simplifying AB + AB+ AC + AC.

Through inspection of the table and a systematic selection of the basic terms,

all possible combinations of basic terms which will be equivalent to the original
expression can be found, The basic terms'must,” of course,be selected such that
each term In the elemental form is represented at least once (that is, such that
the selected terms will represent at least one x in each column),

As another example, it may be shown by similar procedures that the follow-
ing four~term expression is a trap in that it contains no superfluous terms or
variables and that it may be reduced to either of two different three-term ex-
pressions.,

ACD+ABC+ABC+ACD = ACD+ABC+ BCD
- ABC+ACD+ BCD

The systematic procedure for analyzing switching functions is sometimes
useful even when no simplifications can be achieved. As an example of this
case consider the switching function, ABC + ABD+ BD, When this expression
is expanded to its elemental form by multiplying individual terms by expresslons
of the form X + X, it is found that the elemental terms shown at the top of
Table II-2 are present after duplicates have been eliminated
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ABCD ABCD ABcCD ABCD ABCD ABCD ABCD

ABC X X

ACD X X

BD % X X X

ABD X X

Table -2, Analysis of ABC + ABD + BD.

When the terms of the elemental form are grouped by twos in all possible com-
binations a set of three-variable terms is found as follows: ABC, ACD, ABD,
BCD, ABD, BCDH, and ABD. Of these the third and seventh and also the
fourth and sixth may be paired with each pair yiélding the term, BD. The basle
terms of the expression are, therefore, ABC, ACD, BD, and ABD, & happens
that in this example three of the basic terms were in the original expression, but
one new one has been found, From Table ITI-2 it is easily determined that BD

1s a necessary basic term because it is the only one appearing in the columns

for ABCD and two other elemental terms, For a similar reason, ABD *

is necessary. Since both of these terms must appear in any simplified form

of the switching expression, the only elemental term not actounted’for isABCD.
Either ABC or ACD may be chosen, and the other one becomes superfluous,
Although no reductions in the number of terms or variables has been achieved,

it has been found that ACD + BD + ABD is an alternate expression; this ex-
pression would have been extremely difficult to find In any haphazard way.

One possible value of the alternate expression could arise from physical char-
acteristics of the circuits supplying the input signals, If it happened that the
circuit supplying B were capable of operating only one “and" switch while the
circult supplying D could operate two, the alternate would be preferable,

Separation of Variables, If it is possible to group the terms in an expres-
sion So that none of the variables appearing in any one group appears in any
other group, then the network simplifying procedures which have been described
can be applied to the individual groups Instead of the entire expression with a
considerable saving in effort, Consider the switching expression,

AB+BC+ACD+D+ABE+E,

To analyze this expression thoroughly by expanding it to its elemental form
would be laborious, but by procedures described previously it may be quickly
simplified to:

(AB+BC+AC+AB)+(D+E)=AB+BC+D+E,
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Note that the terms in the first set of parenthesis contain only A, B, and C,

and the terms in the second set contdin only D and E. Although a formal proof

is somewhat involved, it can be shown that the expression obtained from simplify-
ing the groups separately 1s the same as would be obtained by handling all of the
original terms together,

Factoring, When it is not a requirement that the switching function remain
of the "and-to-or" type, a reduction in the number of components can be achieved
frequently through the use of simple factoring, An example is AB + A C where
the A may be factored out to yield A(B + C). I diode switching is employed
where the number of diodes in the circuit is equal to the number of input signals
to each "and" and "or" switch, a total of six diodes Is required for a circuit
conforming to the original expression, but only four are required for the fac-
tored form. :

Factoring does not always yléld a simplification; in fact, in some instances
more components are required and other disadvantages are introduced, Con-
sider the switching function, ABC + ADE + F, which requires nine diodes.

If the A isfactored to yield A(BC + DE) + F, a total of ten diodes becomes
necessary. Furthermore, some of the input signals, B for instance, must
proceed through an "and-to-or-to-and-to-or” switching sequence., Multiple
level switching such as this is accomplished only with difficulty when diodes
or some other types of switching components are used.

Conyerting to an "Or-to-and” e of Circuit, Through repeated applica-
tions of the formula, X+ Y Z = (X + Y)(X + Z), any switching function in
"and-to-or® form may be converted to *or-to-and" form, In the previous
chapter this procedure was used to develop the following equality:

AB+CD=(A+C)A +D)NB+ C)B+ D)

In this case, no simplification is obtained; instead, the expression becomes

more complex, However, if the original expression had been AC+ AD+ BC + BD,
it could be shown by the same procedure {or by simple factoring in this case)

that it is equivalent to (A + BNC + D), which corresponds to a substantially

simpler circuit,

From the above example it might be expected that the probability of find-
ing a more complex or a simpler circuit 1s the same. For random switching
functions this situation is true because-there is a one-to~one correspondence
between the set of all possible "and-to=or" circuits and all possible "or-to~-and*
circuits, which of course includes all possible circults. For the switching
functions encountered in practical applications there is considerable question
about their randomness, Although no conclusive data is known, some rough
surveys have indicated that the "and-to-or" type which becomes more com-
plex upon conversion is the more prevalent,
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Factors other than the number of components frequently contribute to the
wsimplicity” of a circuit, One such factor is standardization. It is sometimes
desirable for reasons of standardization to use only "and-to-or" circuits or
only "or-to-and" circuits. In other cases, it may be that switching compo-
nents are chosen which function much more satisfactorily in one type of cir-
cuit than the other. Since conversion is possible, either type may be used
regardless of the nature of the switching functions. If it happens that the

-type most suited to the components requires a larger number of components
than the other type, this disadvantage may be avolded in some machines by
redefining the representation of a "signal® and "no signal". For example,
if a signal is normally représented by a relatively positive voltage, changing
to a relatively negative voltage for a signal representation will cause all ®and"
and "or" functions to be interchanged.

The significance of the "or-to-and® form of switching networks 1s of In-
terest from the standpoint of mental visualization, In some cases the
for-to-and® form is a distinct aid in visualizing the true nature of a switching
function, but in most cases it seems to be only an artificial sort of represen-
tation, In particular, the elemental and~to-or" form specifies in an easily
visualized manner those combinations of input signals which create an outpul
signal, Elemental Mor-to~-and" functions can be worked out, but their useful-
ness, if any, is difficult to imagine, For eample, the elemental "or-to=and®
form for {A + BB + C) would be

(A+B+C)A+B+CHA+B+CYA+B+0Q),

which seems to obscure the true nature of the function,

One exzmple where the "or-to-and" form might be useful for visualization
purposes is

AB+BC+CA (A+B)(A+'(-3)(§+E)+CK

(A+ B+C)A+B+0.

From the "or-to-and” form It may be observed readily that the function causes
an output signal to be generated in any situation where at least one of the three
input variables, A, B, and C, is 1 and at the same time at least one of the
variables 1s 0. This visualization of the function is not so clearly observable
from the "and-to-or" form.

'two reasons for the selection of the particular Boolean algebra notation
which is being used here can now be expluined, One reason is related to the
fact that the majority of switching funttions encountered in practical applica-
tions yield a less complex switching circuit when in the *and-to-or" form.,

The other pertains to the fact that the nand-to~or"™ form is usually more use-
ful for mental visualization of the function, For both reasons the use of + signs
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and parenthesis is the lesser when the "and" and "or" function notations are
made to correspond to sums and products, respectively. In applications where
the "or-to-and" form is known to predominate, the opposite convention may be
used in order to decrease the incidence of + signs and parentheses,

A peculiar property of the conversion process is that, if the factors in the
"or-to~and® expression which is obtained after a conversion are arbitrarily
altered to form terms in a new "and-to-or™ expression, the new expression
will frequently contain superfluous terms which cannot be removed by the
more elementary procedures, For example, the expression, AB+ BD + CD,
when converted to "or-to-and" form is equal to

(A+B+C)A+B+D)A+C+DNB+C+D)

When the variables in the factors are arbitrarily grouped to generate a new
mand-to-or" expression, the following switching function is obtained:

ABC+ABD+ACD+ BCD,

Either the first or the third term, but not both, is superfluous as may be proven

' by testing or by analyzing the expression more completely through use of methods
which have been described. By inverting the new expression, it is found to be
equal to

(A + B)(A + C)A + DXB + C)(B + D)C + D),
which may be arbitrarily altered to

AB+AC+AD+BC+BD+CD,

It can be shown that the second, third, and fourth terms are all superfluous in
thig "and-to-or" expression. Note that it is equivalent to the expression used
at the start of the example. It is always true that after two conversions with
arbitrary alterations of this type that the result will be equivalent to the original
expression.

The conversion property described in the previous paragraph has academic
usefulness in that it may be used to find new examples and problems for students,
Also, incidentally, through mere rearrangement of terms and inversions of
variables, many of the examples glven in this chapter can be rendered sub-~
stantially unrecognizable and can then be used as problems, Three miscel-
laneous examples which provide good practice in Boolean algebra manipula-
tions and which were originally discovered through selecting random functions
and running them through two successive conversions are listed below,

AB+AC+AD+BD=ABC + BD+AD

=AC+A5+§D



ABC+ABD+ACD+AC+BCD =ABC+ACD+AC+BCD
=ABC + ABD+AC
ABC+ACD+ABC+ACD+BCD+BD=ACD +ACD+BCD +BD
| -ACD +ABC+BCD+BD
=ABC +ABC + BCD+BD
=ABC +ACD+BD
' When performing conversions, if relationships of the type,

(WaX+Y¥4+2)W+X) =W+ X

are kept well in mind and used where possible, much work can be avoided by
simplifying the expressions obtained at intermediate steps in the process.
The correctness of this relationship can be established readily through
methods described previously.

Situations Where Some Combinations of Input Variables Will Not Exist,
In all previous examples it was assumed that input signals might be applied
in any possible combination. In many applications encountered in calculators
and other machines which use switching networks, it may be discovered upon
detalled examination of the problem that certain combinations of input signals
will never exist. When this situation is found, it is frequently possible tofind

-5 elrcuit which uses less components or is otherwise simpler than one which

must respond properly to all possible combinations of input signals.

In other instances it may be, for one reason or another, that the existence
or non-existence of an output signal is immaterial for certain combinations of
input signals. From the standpoint of switching network design this situation
is exactly the same as the previous one; in either case the response of the
network to input signal combinations in question may be disregarded.

As an example, consider a switching network where the desired output
signal in terms of the input signals may be represented by the expression,
ZB + ABC, and assume that the combination of input signals represented
by the elemental term, ABC, will never be applied. For purposes of circuit
simplification a good way to visualize the problem is to imagine that, if the
combination were applied, an output signal would be caused. _The represen-
tation of the switching function would then be AB+ ABC + ABC, which can
be reduced to AB + AB. The fact that this particular expression is not a
correct representation of the desired switching function is of no consequence
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because it has been assumed that the combinations of input signals which
would cause a discrepancy will never occur. As a variation in the example,
assume that it is the combination, ABC, which is never applied to_the input
lines., In this case the expression which may be used is AB+ ABC + ABC.
Although the A in the third term is superfluous, the expression is more com-~
plex than the original one; therefore the fact that AB C is never applied is of
no help in this example. '

As a further variation in the above example, assume that the input com-
bination, AC,_is never applled. This specification is the same as stating
that neither ABC nor ABC will be applied. It may be imagined that, if AC
were a valid input combination, an output signal would be generated. The re-
sulting switching expression would then be

AB+ ABC +AC=AB+AB+AC.

In applications where three-input "and" switches are highly undesirable it is
conceivable that this form of the switching network would be chosen in pre-
ference to the original form, which was AB + ABC. However, in most applica-
tions the original form would probably be preferable,

From the nature of the above example it is apparent that, when making
use of non~existent input combinations for finding network simplifications,
they must be considered in all possible ways. More specifically, the non-
existent input combinations must be expanded to their elemental form,
Then attempts must be made to simplify the network by making use of each one
combination in turn, each two input combinations, each three, and so on. In
the above example the greatest simplification would be achieved when making
use of the fact that ABC was non-existent even in the case when both ABC
and ABC are non-existent, If, when represented in their elemental form there
are N non-existent input combinations, a total of oN gdifferent switching expres-
sions must be studied in order to find the most desirable one. While it Is true
that the task can be laborious when many input variables are involved, an ex-
perienced circuit designer can frequently eliminate many of the possibilities
"by inspection, ®

A slightly more illustrative gxample Is the switching function ABCD + ABCD
with the input combinations, ACD and BCD, non-existent. If the switching net-
work is altered so that it would produce an output in the presence of one or the
other, or both, of these combinations, no simplification can be achieved (by
most standards), However, when the non-existent terms are expanded to their
elemental form, three different terms are found: ABCD, ABCD, and ABCD.
When the second and third of these terms, but not the first, are used, the switch-
ing function canbe simplified to ABD + ABC,
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Migeellaneous Forms. In-the general problem there 1s, of course, no
requirement that the final solution be of the pure "gnd-to-or" or "or~to-and”
variety. When multi-level switching networks are permissible it is frequently
possible to find & more desirable arrangement through some miscellaneous
form of network. As mentioned in a previous section, simple factoring of
one or more of the variables-will occasionally produce desirable-results.

In more complicated cases, significant improvements in the switching cir-
cults ean usually be achieved only through exercising considerable ingenuity;
no general methods are known.

For an example, consider the switching function,
AB+ACD + BC+BDE+ADE +CDE.
It is easy enough to show that this expression is equivalent to
(A+BC+DE)B+AE+CD)

once this latter conflguration has been found, but the finding of it is indeed
a puzzle. Frequently, clues to arrangements of this type can be observed
through a searching for similarities of variables in the various factors of
the pure "or-to-and" form. Efen then, a certain amount of cleverness and
skill on the part of the circuit designer seems to be required.

Inverted Inputs Not Readily Available. It has been implied in all of
the previous examples that the inverse of each variable has been available
as an input signal when required. When the signals are generated by flip-
flop type of circuits it is true that the Inverse of any variable may be ob-
tained merely by making a connection to the opposite side of the flip-flop.
However, frequently more than just a connection may be required. In
electronic circults particularly, it may be necessary to intall a power
amplifier between the flip-flop and the switching network. When the
signals must be transmitted a substantial distance the fact that two wires
are needed for each signal with its inverse may be an important disadvan-
tage. Furthermore, in a calculator, signals may be obtained from many
types of circuits other than flip-flops, and in these cases the inverted sig=
nals must usually be obtained through the use of inverters of some sort.

When inverters or other extra equipment must be used to obtain in-
verted signals, it becomes desirable to design switching networks with
the minimization of inverters an objective as well as the minimization of
and™ and "or" switches. Here the general problem becomes very complex
because the most desirable network configuration in any given instance is
dependent upon the relative importance of eliminating an inverter or other
components, Also, the more subtle points such as number of levels of
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switching, the driving power of the input signals, switching speed, and pos-
sible non-existence of certain combinations of input signals must be taken
into censideration.

Again, Ingenuity on the part of the circuit designer ls the primary re~
quirement for finding the-most desirable circuit, As an example, the
switehing function,

ABDE+ABC+ACDE+AB,

requires that three of the input variables be available in inverse form.,
Although it is difficult to find, the expression,

A+BC(DE+C)+AB,
represents the same functien, and only one Inverter is required.

Multiple-Output Switching Networks. Multiple-output netlrorks are,
In general, even more remote from the cases for which systematic pro-
cedures are known for finding the most desirable arrangements. Of course,
if each output signal may be generated by a separate network, all of the
remarks made previously can apply. Also, when the networks are limited
to pure "and-to-or" or Mor-to-and" forms, obvious extensions of the pre~
viously described rules and procedures may be used as aids. The rules
wilt help in finding terms or factors which may appear in the expressions
for two or more of the output signals and which need not be duplicated in

the physical circuitry.

The general problem of finding the-most desirable switching circuit
when two or more output signals are to be derived from one set of input
signals can be a rather complex puzzle. A few ppaetical examples are
worked out in subsequent chapters. In particular, the full adders de-
scribed in the chapter on binary additlon and subtraction are examples
of networks with three Input signals and two output signals. In the chapter
on decimal addition and subtraction a decimal adder operating in the
8, 4, 2, 1 code and involving nine Inputs and five outputs is worked out
in some detail. The method of analysls for this example was also used
for deriving the 8, 4, 2, 1 doubler and quintupler described in the chapter
on decimal multiplication and division. Since these and other examples
meeting various speclalized requirements can be found elsewhere in the
text, none will be presented here,

Matrices. A certain category of multiple-output clrcuits deserve
special mention because of their wide application. The circults are known
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as "matrices" because they are sometimes drawn on paper (cr eccasgionally
even constructed physically) in an array of rows and columns which vaquely
resemble mathematical matrices. A switching matrix is & switching network
which has an output line corresponding to each possible combination of input
variables; that is, an output signal appears on a separate wire for each ele-
mental term composed of the Input variables,

When only two variables are involved, the matrix as shown in Fig, 3-1
is almost trivial. An output signal is obtalned on one of four separate out~
put lines aecording to the four possible combinations of input variables.
When A = 0 and B = 1, for example, a signal will be present on the line
yielding AB, but none of the others.

With three variables, either of the arrangements shown in Fig. 3-2
may be used. In (a) eight 3~input "and" switches are required, whereas in
(b) twelve 2-input "and" switches are required. With diode switching of the
type described, it happens that a total of 24 diodes is necessary in either
case although when other types of switching components are employed one
or the other of the arrangements may be preferable. The arrangement in
(b) is sometimes called a "tree" or a "pyramid.™ Note that C appears as
an input to a relatively large number of "and" switches when compared with
B or A. This unequal loading of the input signals may be a disadvantage.
The loading may be equalized somewhat by interchanging the B and C inputs
in elther the right-hand half or the left-hand half of the figure; it happens
that this change does not affect the output functions.

For four or more input variables, obvious extensions of Flg. 3-2 may
be made, but the number: of dlodes required for the two arrangements are
no longer the same. With n input variables n2" diodes are req ed when
the first type of arrangement 1s used, and 23 + 24+ . . . +2%%! dices are
required for the "tree." The type of matrix which is.most conservative
In components, at least when dlodes are used, is shown for four varlables
in Fig, 3=3. The variables are divided into two groups with one group in-
cluding A and B and the other group including C and D, Four Intermediate
signal lines are derived from each group, and then these are combined in
a set of sixteen two-Input "and" switches which will yield a signal on one
of sixteen output lines. '

With five input variables an analogous array is used to minimize the
number of components. In this case one group would contain two variables;
the other would contain three with eight intermediate lines formed accord-
Ing to elther of the arrangements shown In Fig. 3-2, The thirty-two output
lines would then be obtained with a four-by=-eight array of two-Input "and"
switches.

-55-



In general, with n input variebles, the-variables are divided into two
groups with ft/2 variables in each group when n is even and with (n + 1)/2
and (n - 1)/2 variables, respeetively, when n is odd. Each group is divided
into subgroups in a similar manner, and the subdividing is continued until
all subgroups contain either 2 or 3 variables. The 2-variable and 3-variable
subgroups are applied to switching networks of the types shown in Figs. 3-1
and 3-2, respectively. The subgroups are then combined with appropriate
arrays of 2-Input "and" switches.

In-some applications the output signals from a matrix are used directly

-ag-Implied inthe preceding discussion. In other applications the matrix
is used to "gate" an external signal (such as series of pulses) onto one of
8 multiplicity of signal lines. For three input variables probably the most
obvious way of accomplishing the desired result is shown in Fig. 3=4 (a).
Since the signal to be gated may be considered as another input to the
switching network as a whole, a number of variatlons in the matrix are
possible. Two variations are shown in Fig. 3~4 (b) and (¢). Either of
these arrangements requires less components than (a}), but they have the
disadvantage that the signal to be gated must pass through more "and"
switches In succession, and with some types of components the delay
might be excesslve.

When a matrix involving four or more variables is necessary for the
gating of the signal, extensions of the schemes shown in Fig. 3-4 may be
readily worked out. One arrangement with four matrix variebles, which
combines the features of Figs. 3-3 and 3-4 (c), is glven in Fig. 3-b5.
When choosing the most deslrable arrangement for any given applicatigm,
1t should be noted that in some arrangements certain of the "and" switch
inputs must pass the signal being gated while others need to respond only
to the matrix switching signals. It may be that an "and" switch which
must pass the gated signal 1s much more expensive than the other "and"
switches. For this reason, the simple minimization of "and" switches

-1s not necessarily the best criterion for judging the various possible
network configurations.

Another important application of matrices is the selection of a signal
from one on several different lines and applying this signal to a single
output line, In this case the multi-output features of matrices substantially
disappear and the notation used earlier in the chapter for single output
circults may be applied directly. For selecting one of eight sigmals, Sq
to Sg, by means of & matrix using three control signals, A, B, and C, the
output may be expressed as

S=8]ABC+8S9ABC+83ABC+54ABC
+85ABC + SgABC + S;ABC + SgABC.
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This expression may be-rearranged and factored in a number of different ways
to produee new circuits. An example is

S= [(51A+SgA)B + (5,4 +5,8B] ¢
+ [(S5A + S6K)B +{S1A + SB—A)E] €.

When four or more control signals are involved, the principle illustrated in
Fig. 3~3 may be applied. If one of sixteen signals are to be selected, they
may be entered as third inputs to the four-by-four array of "and" switches,
and the sixteen outputs are then combined in an "or" switch.

In all of the matrix exampies, when the numbar of outputs involved is
not exactly 2, where n is some integer, it is necessary ¢f course to choose
a number, n, of control signals such that 2" will be greater than the number
of outputs. In these instances special arrangements can sometimes be found
which will require less components than will be required through eliminating
unused "and" and "or" switches in the more straightforward configurations.

Sequenced Signals,. In some applications the sequence in which the various
input signals are applied to a switching network is of consequence in the for-
mation of the desired output signal. To make a switching nefwork sensitive
to the sequence of the applied signals it is necessary to employ feedback
paths (storage).

As a simple example, consider two pulse-type signals, A and B, where
it 1s desired that A not appear on the ouput and that B appear on the output
line only in the event that A is applied prior to B. If it is known that A and
B will never be applied very close together in time, it is sufficient to have
A flip a flip~flop, the output of which is applied to an "and" switch that will
control the passage of B. In the general case when the input signals may
appear at substantially random times a more refined switching circuit is
necessary. The difficulty arises from the fact that whea A and B are applied
close together in time, the flip~-flop may be changing when B appears at the
"and" switch. The amplitude of the output pulse might then be reduced by
an unknown amount where it would be desired to have zero output or a full-
sized pulse, 2 ‘

An arrangement which produces the desired res'ult, except for a delay,
is shown in Fig. 3-6. A flip~flop and an "and" switch are used as described
in the previous paragraph, but the output of the "and" switch is used to flip
a second flip-flop. The output of this second flip-flop is then combined in
a second "and" switch with the delayed B signal. With this arrangement,
the second flip-flop will either flip or not (no intermediate state is possible)
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regardless of the strength of the output from the first "and" switch, Con-
sequently, the output pulse will be elther full-sized or zero.

Several variations in the switching arrangement are possible which have
various advantages and disadvantages depending upon the detailed require-
ments of the application. One type of variation worth noting is derived from
the fact that, of the four possible combinations of stable states of the two flip-
flops, one combination never exists. Specifically, the second flip-flop is
never in the "1" state at the same time that the first flip-flop is inthe mQO
state. As a consequence, the two flip~flops may be replaced by a single
configuration which has three stable states. The resulting arrangement is
shown in Fig. 3-7. After a pulse is applied to the npeset" line, a signal
appears at the output of the first inverter, but no signals appear on the out-
put lines from the second or third inverters. If the B input pulse is applied
prior to A, it will not pass either "and" switch. If A is applied prior to B,
a signal will be caused to appear at the output of the second inverter. The
B signal will then pass the first "and" switch and cause the array to exist
in its third stable state. The second "and® switch will now be opened, .and
the delayed B pulse will appear on the output line. As before, the output
pulse will be either zero or full-sized.

A requirement frequently encountered in the control portion of a cal-
culator involves the starting and stopping of a uniform series of pulses
by start and stop pulses which may be random in time. The basic problem
involved, which is the causing of all output pulses to be either zero or full-
sized, is substantially the same as when designing switching networks to
respond to sequenced signals.

Three solutions to be problem are shown in Fig. 3-8. All are similar
in their use of bistable storage elements, but the differences In the place=
ment of the delay device create important differences in circuit operation
as illustrated by the timing chart in the figure. In (a), all pulses occurring
after start pulse and before the stop pulse will appear on the output line,
However, they will be delayed because they must pass through the delay
device. The amount of delay should be short relative to the time between
successive pulses, but should be longer than the time required for the
bistable device to change its state. In (b) the output pulses will not be
delayed at all although the first puise after the start pulse {the 2 pulse in
the timing chart) may not appear on the output line. For the 2 pulse to
appear, the start pulse must be applied at a time prior to the appearance
of the 1 pulse at the Ay and Ag tand" switches. Similarly, the 6 pulse
may or may not appear on the output in accordance with whether or not
the 5 pulse arrives at the "and" switches prior to the application of the
stop pulse. With the arrangement in (c) the first pulse to pass s the second
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one after the start pulse and the last one will be the first one after the stop
pulse. In all three arrangements, any glven pulse will either not pass at
all or will pass with full amplitude regardless of the timing relative to the
starting and stopping signals.

The time of application of signals of the steady=-state type can be of con-
sequence as well as when pulse signals are used. Flip-flops or other multi~
stable conflgurations are employed in the same general manner. Because
the problems that arise in practide are usually 80 "miscelianeous" in nature
and because no organized methods of solution are known, the subject will not
be carried farther.
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Fig. 3-1. Two-variable matrix.
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Fig. 3-2. Three-variable matrices.
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Fig. 3-4. Three-variable "gating matrices.
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Fig. 3-8. Example of circuit responsive to sequence of signalis.
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Fig. 3-7. A variation of Fig. 3-6.
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Fig. 3-8. Starting and stopping a series of pulses, - 64 -



