

The Platform for Application Growth

垔悪音童

- Enterprise Systems Architecture/370 (ESA/370)
- Architecture base into the '90s
- Extensive granularity
- Numerous upgrade paths
- Up to 21-fold growth
- Up to 2560MB Processor Storage
- Up to 6 Vector Facilities
- 3.0/4.5MB/sec. Data Transfer Rate
- Up to 128 channels
- Multi-image management options
- Largest single system image
- Asymmetrical configuration option

IBM Enterprise Systems Architecture/370

Upgrade Performance Comparison (ITR)

Model From-To	MVS/ESA Commercial	Numerically Intensive Computing		VM/XA SPX CMS
		Scalar	Vector	
100S-120S	1.3-1.4	1.0-1.4	1.2-1.5	1.3
120S-150S	1.5-1.6	1.6-2.2	1.0-1.5	1.6
120E-150S	1.5-1.6	1.6-2.2	1.0-1.5	1.6
150S-170S	1.1-1.3	1.0-1.4	1.1-1.4	1.1
150E-170S	1.4-1.5	1.0-1.4	1.0-1.3	1.4
170S-180S	1.3-1.5	1.2-1.4	1.2-1.5	1.3
150E-180S	1.9-2.2	1.3-1.7	1.3-1.6	1.9
180E-180S	1.2-1.3	1.2	1.1-1.3	1.2
150E-250S	2.0-2.4	1.6-2.5	1.6-2.1	2.4
150S-250S	1.9	1.7-1.9	1.7-1.9	1.9
250S-280S	1.5-1.8	1.3-1.6	1.4-1.8	1.5
180S-280S	1.8-1.9	1.9-2.0	1.9-2.0	1.9
180E-280S	2.3-2.5	2.3-2.5	2.3-2.6	2.4
280E-280S	1.2-1.3	1.2	1.2-1.3	1.2
180S-200S	1.8-1.9	2.0	1.9-2.0	1.9
180E-200S	2.4-2.6	2.3-2.5	2.3-2.6	2.4
200E-200S	1.2-1.3	1.2	1.1-1.3	1.2
200E-380S	1.8-1.9	1.7-1.9	1.7-2.0	1.7
200S-380S	1.4-1.5	1.5	1.4-1.5	1.4
280E-380S	1.8-2.0	1.8-1.9	1.7-2.0	1.8
280S-380S	1.4-1.5	1.5	1.4-1.5	1.4
200S-300S	1.4	1.5	1.3-1.5	1.4
$200 \mathrm{E}-300 \mathrm{~S}$	1.8-1.9	1.7-1.9	1.7-1.9	1.7
280S-400S	1.2-1.3	2.0	1.1-1.3	1.2
200S-400S	1.7-1.9	2.0	1.7-2.0	1.8
380S-400S	1.2-1.3	1.3	1.2-1.3	1.2
300S-400S	1.2-1.3	1.3	1.2-1.3	1.2
$280 \mathrm{E}-400 \mathrm{~S}$	2.3-2.5	2.3-2.5	2.2-2.6	2.2
200E-400S	2.3-2.5	2.3-2.5	2.1-2.6	2.2
300E-400S	1.6-1.7	1.5-1.6	1.5-1.7	1.5
400E-400S	1.2-1.4	1.2-1.3	1.2-1.4	1.2
300S-500S	1.5-1.6	1.6-1.7	1.5-1.6	1.5
400S-500S	1.2	1.2	1.2	1.2
300E-500S	1.9-2.1	1.9-2.1	1.8-2.1	1.9
400E-500S	1.5-1.7	1.5-1.6	1.4-1.7	1.5
300S-600S	1.2-1-1.8	1.9-2.0	1.6-2.0	1.8
400S-600S	1.4	1.5	1.3-1.5	1.4
500S-600S	1.1	1.2	1.1-1.2	1.1
300E-600S	2.2-2.4	2.3-2.5	2.0-2.6	2.2
400E-600S	1.7-1.9	1.8-1.9	1.6-2.0	1.7
500E-600S	1.4-1.6	1.4-1.5	1.3-1.6	1.4
600E-600S	1.3-1.5	1.2-1.3	1.2-1.4	1.2

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using IBM Benchmark Workloads

The Base for Growth into the 90 s

Models

100 S	
120 S	
150 S	Uniprocessor models
170 S	
180 S	
200 S	Dyadic processor model
300 S	Triadic processor model
250 S	2-way multiprocessor models
280 S	2-way multiprocessor model
380 S	3-w
400 S	4-way multiprocessor model
500 S	5-way multiprocessor model
600 S	6-way multiprocessor model

Field Upgradable from Model 100S through 600S

Page 4

Extensive Granularity

IBM ES/3090 S System Design

Processor Storage

100S, 120S, 150S, 170S, 180S

Page 6

- Thermal Conduction Module (TCM) - enhanced cooling
- Multilayer Ceramic Substrate (38 layers)
- Denser TCM Board
- Cycle time 18.5 ns -15 ns
- New logic chip-imbedded arrays
$+\underset{\substack{\text { Chip } \\ \text { Circuits }}}{\text { Chip }} \longrightarrow \underset{\substack{\text { 100/132 } \\ \text { Chip Sites }}}{\text { TCM }} \longrightarrow \underset{\text { 6/9 TCMs }}{\text { Board }} \longrightarrow \underset{\text { 2 Boards }}{\text { Frame }}$
Emitter Coupled Logic (ECL)

		Processor Storage			
	TCM Logic	Central Storage	Expanded Storage	High- Speed Buffer	Processor Microcode WCS ROS
Type	Bipolar	NMOS	NMOS	Bipolar	Bipolar
Capacity	-	1 Mb	1 Mb	$4 \mathrm{~Kb} / 8 \mathrm{~Kb}^{*}$	$32 \mathrm{~Kb} / 64 \mathrm{~Kb}$
Circuits per chip	$2360^{* / 612}$	-	-	-	-

100S, $120 \mathrm{~S}, 150 \mathrm{~S}$ and 170 S may have 64 Kb chips in Central Storage 100S, $120 \mathrm{~S}, 150 \mathrm{~S}, 170 \mathrm{~S}$ and 250 S may have 288 Kb chips in Expanded Storage
*Writeable Control Store, 2360 circuits/chip and 8 Kb High Speed Buffer Chip are available in 180S, 200S, 280S, $300 \mathrm{~S}, 380 \mathrm{~S}, 400 \mathrm{~S}$, 500 S and 600 S

IBM Technology Leadership:

- TCM Continues to have the Densest Logic Module Packaging in the Industry in commercial mainframes
- First One-Megabit Chip in Production Systems
- ES/3090 Models use 2nd Generation One-Megabit Chip

IBM Enterprise Systems
Architecture/370 (ESA/370)

IBM ES/3090 S Multi-Image Management

- A new architecture for:
- Processing increasing amounts of data
- Avoiding constraints to further growth
- Maximizing system efficiency through use of Expanded Storage
- ESA/370 is the architectural base into the '90s
- An evolutionary step beyond S/370 Extended Architecture
- Unique to the IBM ES/3090 and IBM ES/4381 Model Groups 90E, 91E and 92E
- Supported by MVS/ESA and VM/XA SP software for guest usage

MVS/ESA
 (MVS/SP V3 and MVS/DFP V3)

- Runs on all IBM ES/3090 Models and IBM ES/4381 Model Groups 90E, 91E and 92E
- MVS/SP V3 is easy to install and use
- Offers powerful addressing capability through creation of multiple 2 GB data spaces
- Maximum benefits derived through use of Expanded Storage
- Provides the base for improved performance and response time by reducing I/Os
- Improves data integrity by allowing separation of programs and data
- Improves I/S professional productivity
- Enables application growth
- Provides significant operational value
- Allows for automatic management of data within the storage hierarchy
- Simplifies DASD migration

- Physical partitioning with ES/3090 multiprocessor models
- More granularity on multiprocessors through asymmetry
- Logical partitioning through ES/3090 Processor Resource/ Systems Manager (PR/SM) feature
- Complements physical and software partitioning
- Provides up to 7 logical partitions*
- Provides up to 14 logical partitions on MP Models operating in Physically Partitioned Mode**
- Comprehensive SCP support
- High performance through event driven scheduling
- Uses existing skills
- Flexible systems resource utilization
- Processor/Vector Facilities can be dynamically shared or dedicated, with granularity as small as a portion of a single processor
- Processor storage is dedicated and can be partitioned in 1MB increments at activation
- Channels can be dynamically dedicated or reconfigured, with a granularity of one channel
- One PR/SM feature per side required on ES/3090 S Models
- Software partitioning through VM/XA SP
- Enhanced through PR/SM feature
- Up to 6 preferred guests
- Used for diverse production workloads, consolidation, migration, test, development, maintenance and backup/ recovery
- Provides cost reduction, resource balancing, workload isolation, physical backup, and lower cost entry multiprocessing

[^0]- Optional extension of ES/3090 Central Storage
- Expanded Storage provides an effective base for data in memory
- Up to 2560 MB of ES/3090 S Model Processor Storage (combination of Central Storage and Expanded Storage)
- More granularity on multiprocessors through asymmetry
- Immediate benefit to subsystem and user program with no program changes required
- 4 K pages synchronously moved to or from Central Storage
- Page movement orders of magnitude faster than channel attached devices
- Single and double-bit error correction and detection of triple and some multiple bit errors for increased system availability
- Significant performance improvements ... some customer experiences:
- External paging load reduced 50\%
- Response time improved 67\%
- Transactions volumes increased 30\%
- Job elapsed times reduced
- Benefits when used with MVS/ESA
- Reduced I/Os
- Provides a base for improved performance, including response time
- High performance spaces (Hiperspaces)
- High performance SORT (DFSORT Hipersorting)
- Improved MVS/ESA performance in terms of response time, transaction volumes, and number of users through use of Expanded Storage and subsystems such as DB2, IMS, TSO and CICS.
- Significant performance improvements through use of expanded storage for minidisk caching and logon directories (VM/XA SP)
- Improved VM/SP HPO and VM/XA performance by paging into Expanded Storage
- Partitioned use of Expanded Storage by VM/XA SP
- Optional extension to each Central Processor
- Incremental investment: up to six on Model 600S
- 171 vector instructions
- Up to 15 -fold performance growth in vector throughput
- High-speed divide and doubled section size (Model 180S, $200 \mathrm{~S}, 280 \mathrm{~S}, 300 \mathrm{~S}, 380 \mathrm{~S}, 400 \mathrm{~S}$, 500 S and 600 S)
- Growing number of enabled applications are available in the areas of seismic, structures, fluids, computational chemistry, and others*

VM support

- VM/SP HPO Release 5
- VM/XA SP
- Exploitation of expanded storage for applications with large working sets
- AIX/370

MVS support

- MVS/SP Versions 2 and 3
- Data in virtual for selected data sets
- RMF for vector statistics

Application Support

- SCENAD - full screen menus, ISPF support
- VS FORTRAN Version 2.3
- Automatic vectorizing capabilities
- Interactive Vectorization Aid
- Multitasking facility for multiple processor execution of a single job
- Assembler H Version 2
- VS FORTRAN V2.1
- Parallel FORTRAN (PRPQ)
- Engineering and Scientific Subroutine Library (ESSL)
- FORTRAN translation tool
- IBM FORTRAN Language Conversion Program
- APL2 direct support of Vector Facility
- Mathematical Programming System Extended/370 (MPSX/370) Vector Facility support with up to two times performance improvement over scalar

[^1]
Internal Throughput Rate Comparisons

Static Structural Analysis-NASTRAN ${ }{ }^{1}$

[^2]| Model | Processor Storage | | | | | | Channel | | | Vector
 Facility | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Central
 Storage | | | Expanded Storage | | | | | | | | |
| | Min. | Max. | Incr. |
| 100S | 32 | 64 | 32 | 0 | 256 | 64 | 16 | 32 | 8 | 0 | 1 | 1 |
| 120S | 32 | 64 | 32 | 0 | 256 | 64 | 16 | 32 | 8 | 0 | 1 | 1 |
| 150 S | 32 | 64 | 32 | 0 | 256 | 64 | 16 | 32 | 8 | 0 | 1 | 1 |
| 170S | 32 | 64 | 32 | 0 | 256 | 64 | 16 | 32 | 8 | 0 | 1 | 1 |
| 180S | 32 | 128 | (5) | 0 | 256 | 64 | 16 | 32 | 8 | 0 | 1 | 1 |
| 250S | 64 | 128 | 64 | 0 | 512 | 64 | 32 | 64 | 8 | 0 | 2 | 1 |
| 280S | 64 | 256 | (6) | 0 | 512 | 64 | 32 | 64 | 8 | 0 | 2 | 1 |
| 200S | 64 | 256 | (6) | 0 | 1024 | (1) | 32 | 64 | (2) | 0 | 2 | 1 |
| 300S | 64 | 256 | (6) | 0 | 1024 | (1) | 32 | 64 | (2) | 0 | 3 | 1 |
| 380S | 128 | 512 | (7) | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|r\|} \hline 1024 \\ 256 \end{array}$ | $\begin{array}{r} \text { (1) } \\ 64 \end{array}$ | $\begin{aligned} & 32 \\ & 16 \end{aligned}$ | $\begin{aligned} & 64 \\ & 32 \end{aligned}$ | $\begin{gathered} (2) \\ 8 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 2 \\ & 1 \end{aligned}$ | 1 |
| 400 S | 128 | 512 | (7) | 0 | 2048 | (3) | 64 | 128 | (4) | 0 | 4 | 1 |
| 500S | 128 | 512 | (7) | 0 | 2048 | (3) | 64 | 128 | (4) | 0 | 5 | 1 |
| 600 S | 128 | 512 | (7) | 0 | 2048 | (3) | 64 | 128 | (4) | 0 | 6 | 1 |

(1) 64 up to 256 . Then 256 to 512 . Then 512 .
(2) 8 up to 48 . Then 16 .
(4) On each side 8 up to 48 . Then 16 to 64 .
(3) On each side 64 up to 256
(5) 32 up to 64 . Then 64 .

Then 256 to 512 . Then 512 to 1024
(7) 128 up to 256 . Then 256

Models 250S, 280S, 380S, 400S, 500S and 600S can be configured
asymmetrically for channels and expanded storage. If expanded storage is installed, at least 64 MB must be present on each side.
IBM ES/3090 S Processor Support Units

Model	Processor Controller 3092	Power and Coolant Distrib. 3097-1,-2	Power Unit 3089-3*	Display Station 3206-100	Modem $3864-2^{* * *}$
100S	Model 4	1	1	$2-3$	
120S	Model 4	1	1	$2-3$	1
150S	Model 5	1	1	$2-5$	1
170S	Model 5	1	1	$2-5$	1
180S	Model 5	1	1	$2-5$	1
250S	Model 5	2	2	$3-6$	2
280S	Model 5	2	2	$3-6$	2
200S	Model 5	1	2	$2-5$	1
300S	Model 5	1	2	$2-5$	1
380S	Model 5	2	3	$3-6$	2
400S	Model 5	2	4	$3-6$	2
500S	Model 5	2	4	$3-6$	2
600S	Model 5	2	4	$3-6$	2

* Or equivalent 400 Hz power source
** Or 4800 bps switched network modem (or equivalent) with autocall/ autoanswer feature

Nole: For additional details, see IBM 3090 Processor Complex Support Units, G511-0134 and ES/3090 Processor Complex: Installation Manual-Physical Planning (GC22-7080)

IBM ES/3090 S
 Physical Characteristics

MVS

Function	MVS/System Product	
	MVS/ XA	MVS/ ESA
Support for ESA/370		\bullet
Data Spaces TSO/E REXX \& CLISTs Catalog entries Virtual Lookaside Facility		\bullet
Expanded Storage* VIO Expanded Storage Support*	\bullet	\bullet
Hiperspace* VSAM Buffers in Hiperspace* Hipersorting*		\bullet
Data in Virtual	\bullet	\bullet
Data Windowing Services*	\bullet	\bullet
Central Storage Utilization		
Constraint Relief Below 16 BB *	\bullet	$\bullet \bullet$
CICS Data Tables Support for 5I2MB		\bullet
Multi-address Space Access	\bullet	$\bullet \bullet$
Global Resource Serialization	\bullet	$\bullet \bullet$
Up to six-way Single Image Support	\bullet	$\bullet \bullet$
Vector Facility - Compile/Execute	\bullet	\bullet
FORTRAN Multitasking Facility	\bullet	\bullet

* Additional Value from Expanded Storage
- Function Supported
- Function Enhanced

VM

Function	VM/SP	VM/XA	
	High Performance Option 5	Systems Facility $\mathbf{2}$	System Product 2
31-bit Addressing		\bullet	\bullet
Up to 6-Way Single System Image		\bullet	\bullet
MVS/ESA Guest Support			\bullet
MVS/XA Guest Support		\bullet	\bullet
MVS/370 Guest Support	\bullet	\bullet	\bullet
AIX/370 Guest Support	\bullet		\bullet
VSE and VSI Support	\bullet	\bullet	\bullet
Multiple Preferred Guests Support			\bullet
Start Interpretive Execution (SIE)		\bullet	\bullet
VMA under SIE		\bullet	\bullet
SIE Assist	\bullet	\bullet	\bullet
Dynamic Channel Subsystem		\bullet	\bullet
64MB Central Storage	\bullet	\bullet	\bullet
512MB Central Storage	\bullet	\bullet	\bullet
Expanded Storage	\bullet	\bullet	\bullet
Paging Support Guest Support Minidisk Caching	\bullet	\bullet	\bullet
Vector Facility - Compile/Execute	\bullet	\bullet	\bullet
High-Capacity Bimodal CMS			\bullet
CMS-Numeric Intensive Computing	\bullet	\bullet	\bullet
Spool File Limit Relief	\bullet	\bullet	\bullet
Native SNA Support	\bullet	\bullet	\bullet
Programmable Operator Support	\bullet		\bullet
Parallel FORTRAN (PRPQ)		\bullet	\bullet
	\bullet	\bullet	\bullet
	\bullet	\bullet	\bullet

3044 Fiber Optic Channel Extender Link

- Introduces fiber optic technology as a transmission medium for attaching I/O control units, switching units and channel-to-channel interfaces to block multiplexer channels
- Consists of two units interconnected by up to 2 km of fiber optic cable. (C02 attaches to channel and D02 to remote control units)
- Provides "near local" response time to "remote" users
- Support speeds up to $4.5 \mathrm{MB} / \mathrm{sec}$
- Supports 50/125 or $62.5 / 125$ micron fiber
- Supports DASD and tape

3380
MOD CJ2

3088 Multisystem Channel Communication Unit

- Provides the capability of interconnecting up to eight processor channels and up to 252 logical CTCA Links
- Data streaming capability providing up to $4.5 \mathrm{MB} / \mathrm{sec}$ transfer rate
- Interprocessor cable distances of up to 245 meters
- Up to two simultaneous data transfers
- Early channel disconnect allowing enhanced channel utilization
- Compatibility with existing S/370 CTCA facilities

3814 Switching Management System

- Provides automated switching of control unit interfaces and processor channels
- Consists of 3814 switching units, operator consoles, and optional hardcopy printers
- Can create up to a 128 -node switching matrix (8×16 or 16×8) and can control up to 128 control unit two-channel switches
- A single control point for I/O switching and control unit two-channel switches is provided
- Configurations can be stored for control unit switching (up to 464) and control unit two-channel switches (up to 327)
- Power sequencing for attached control units (up to 16 per 3814) is allowed
- Security protection is controlled by three or four levels of passwords
- Productivity
- Ease of Use
- RAS
- Function
- Constraint Relief
- Performance
- Data in Memory

Application Processing Power

MVS/ESA, DFSMS, and ES/3090 S Models

IBM ES/3090 Total System Solution

What customer environments benefit from MVS/ESA, DFSMS, and the ES/3090 S models?

Customers may receive benefits up to:

IBM ES/3090 S Leadership (1)

Design

- Uni-, dyadic-, triadic processors, two-, three-, four-, five-, and six-way multiprocessors
- ESA/370 capable
- Supports data in memory
- Enhanced System Control Element (SCE)
- Scalar, vector and parallel processing
- Large processor storage
- Processor Resource/Systems Manager feature
- Additional fast-path capability
- Integrated Vector Facility
- Asymmetrical configurations of Central Processors, Expanded Storage, Channels and Vector Facilities

Architecture

- Supports three architectures
- ESA/370, 370-XA, and S/370

Technology

- TCM - densest logic module packaging on commercial mainframes
- 2nd generation 1-megabit memory chip
- Fastest, densest 32 K -bit SRAM - (3 ns) bipolar chip in production
- Faster, denser logic chip with imbedded arrays
- Writeable control storage (WCS)

Performance

- Instruction execution overlap
- High performance multiply
- Vector Facility - doubled section size and high-speed divide
- Expanded storage
- 64/128 KB high-speed buffer
- 64-bit data paths
- Powerful, flexible RISC I/O processor
- SIE support

Availability

- Dedicated microprocessor for each channel
- Circuit design dedicated to availability
- Double bit error correction in expanded storage
- Remote Support Facility

Growth

- Up to 21 -fold performance growth within the ES/3090 S family
- Up to $2,560 \mathrm{MB}$ of processor storage
- Up to six Vector Facilities
- Up to 128 channels
- Largest available commercial single-system image

Trademarks

The following are Trademarks of
the International Business Machines (IBM ${ }^{\star}$) Corporation:
Enterprise Systems Architecture $/ 370^{\mathrm{TM}}$
Processor Resource/Systems Manager ${ }^{\text {TM }}$
Hiperspace ${ }^{\text {TM }}$
DFSMS ${ }^{\text {TM }}$
ESA $/ 370^{\text {TM }}$
MVS/DFP ${ }^{\text {TM }}$
MVS/ESA ${ }^{\text {TM }}$
MVS/XA ${ }^{\text {TM }}$
PR/SM ${ }^{\text {TM }}$
ES/3090 ${ }^{\text {TM }}$
ES/4381 ${ }^{\mathrm{TM}}$
Hipersort ${ }^{\text {TM }}$
VM/XA ${ }^{\text {TM }}$
CICS/MVS ${ }^{\text {TM }}$
IMS/ESA ${ }^{\text {TM }}$
AIX $^{\text {TM } / 370 ~}$

$\overline{\bar{E}} \overline{\overline{E —}}$ 気

IBM Eurocoordination SA au capital de 2.700 .000 F
Siège social: Tour Pascal 22 Route de la Demi Lune 92075 Puteaux (Hauts-de-Seine) RCS Nanterre B304 538192
France
IBM World Trade Asia/Pacific Group
IBM Kamiyacho Building
3-9 Toranomon 4-chome
Minato-ku
Tokyo 105, Japan
IBM World Trade Americas Group
Town of Mount Pleasant
Route 9, North Tarrytown
Printed in Denmark (4/89)
New York, 10591, USA

Fifth Edition (April 1989)

Changes are made periodically to the information herein. Any such changes will be reflected in subsequent editions.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.
© Copyright International Business Machines Corporation 1989.

[^0]: * Up to 4 logical partitions on 100S, 120S, 150S, 170 S and 250 S
 ** Up to 8 logical partitions on 250 S

[^1]: * See Catalog of Engineering and Scientific Application Programs, G320-6739

[^2]: ${ }^{1}$ NASTRAN is a registered trademark of the National Aeronautics and Space Administration
 BCCLLI2 (NASTRAN Static Structure Analysis)

