March 17, 2003

The following document is
"Planning a Computer System - Project Stretch"
edited by
Werner Buchholz
Systems Consultant
Corporate Staff, Research and Engineering
Internatinal Business Machines Corporation
published by
McGraw-Hill Book Company
New York, ... 1962

Copyright status
————— Original Message -----
From: Plikerd, Scott
To: 'edeed-thelen.org'
Sent: Friday, February 28, 2003 12:02 PM

Subject: (c¢) owner of Buchholz/PLANNING A COMPUTER SYSTEM

Dear Mr. Thelen:

According to our records, the copyright registration for above-referenced
title published in 1962, was not renewed with the Copyright Office at the

Library of Congress. Because this title was published before 1964,

it did

not receive an automatic renewal and appears to have fallen into the public
domain. It is possible that IBM or even the author renewed this title in

1990, when it came up for renewal, but McGraw-Hill did not.

To be

absolutely sure, you will have to check with the Copyright Office to see if

the copyright registration was renewed.
Regards,

Scott W. Plikerd

Manager

Permissions Department
McGraw-Hill Education
Two Penn Plaza, 9th Floor
New York, NY 10121-2298
(212) 904-2614 (phone)
(212) 904-6285 (fax)

————— Original Message -----

From: "Werner Buchholz" <wbuchholz@computer.orgs>

To: "Ed Thelen" <edeed-thelen.org>

Cc: "Williams, Mike" <williams@computerhistory.orgs;

<spicer@computerhistory.orgs>
Sent: Wednesday, March 12, 2003 5:33 AM

"Spicer, Dag"

Subject: Re: your book "Planning a Computer System - Project Stretch"

At 03:43 AM 3/12/2003 -0800, Ed Thelen wrote:

>proper to ask your permission

V V. V V V

>I presume your book is now "in the public domain".

However,

>to place a representation of your book on my web site.

I think it

> I certainly have no objection.
>
> Werner Buchholz

The book was kindly loaned by
The Computer history Museum
1401 Shoreline Blvd.
Mountain View, California
and scanned by
Ed Thelen edeed-thelen.org

- PLANNING
A
COMPUTER
SYSTEM

Edited by WERNER BUCHHOLZ

Systems Consultant
Corporate Staff, Research and Engineering
International Business Machines Corporation

McGRAW-HILL
BOOK
COMPANY

The CONTRIBUTORS

F.P. BROOKS, JR.
W. BUCHHOLZ
G.A. BLAAUW
R.W. BEMER
S.G. CAMPBELL
EF. CODD

E.S. LOWRY

E. McDONOUGH
C.A. SCALZI

E. BLOCH

RS. BALLANCE
J. COCKE

H.G. KOLSKY
P.S. HERWITZ
J.H. POMERENE

The EDITOR

WERNER BUCHHOLZ, presently a
Systems Consultant on the IBM Research
and Engineering Corporate Staff, was
manager of engineering planning during
most of the period of Project Stretch.
He is a graduate from the University of
Toronto and received a Ph.D. in Electri-
cal Engineering from the California In-
stitute of Technology. He has been
associated with IBM since 1949 in vari-
ous systems planning activities.

He was Chairman of the Institute of
Radio Engineers’ Professional Group on
Electronic Computers in 1957-58, and
the first editor of its Transactions. In ad-
dition to the IRE, he is a member of the
Association for Computing Machinery.

PLANNING A
COMPUTER SYSTEM

This book is primarily concerned with
the selection of an instruction set and re-
lated functional characteristics of a large
high-speed digital computer.

Except for cost and speed, these are the
characteristics that do most to distinguish
one computer from the next — yet they
have received scant recognition in the
literature so far. For example, every com-
puter designer makes a choice between
binary and decimal arithmetic, but this
book contains the first non-superficial
treatment of this fundamental aspect of
computer design.

The subject is a specific computer: the
IBM 7030, which is the outcome of a
design project called “Project Stretch.”
Authors of individual chapters partici-
pated actively in this project. This text,
therefore, reflects the reality of direct
personal experience, giving reasons for
design choices and stating compromises
between conflicting requirements.
Because the IBM 7030 combines comput-
ing and data processing facilities previ-
ously found only in separate computers,
together with new features important for
real-time operation, all of these important
topics are treated in detail. Some of the
numerous original ideas described are:
the interrupt system, the floating-point
exception handling, variable field and byte
size operation, indexable addressing to
the bit level, logical-connective instruc-
tions, memory protection, instruction
look-ahead, and the generalized input-
output approach.

P R A — » p e ——

Other McGRA*W-HILL Books

DIGITAL COMPUTER AND CONTROL ENGINEERING

By ROBERT S. LEDLEY, President, National Biomedical Research Founda-
tion. McGraw-Hill Series in Electrical and Flectronic Engineering. 835 pages.
This book, a pioneer in the field of digital computers and digital controls,
is a comprehensive elementary engineering textbook intended for senior
undergraduate or first-year graduate courses. The unified treatment covers
almost all aspects of the field from a detailed engineering point of view.
The subjects covered were chosen to present a continuous, natural develop-
ment of the major areas of digital computers and controls.

PROGRAMMING FOR DIGITAL COMPUTERS

By JOACHIM JEENEL, IBM Corporation. 528 pages.

Designed for readers with no previous programming experience, this work
provides a methodical approach to the preparation of problems for stored-
program calculators. The approach is based on the representation of a
program as a logical structure of standardized building blocks. The prin-
ciples and procedures apply to scientific and commercial data processing
problems; they pertain to stored-program calculators in general, and are
not restricted to specific machines.

DIGITAL COMPUTATION AND NUMERICAL METHODS

By RAYMOND W. SOUTHWORTH, Yale University; and SAMUEL L.
DeLEEUW, University of Mississippi. 508 pages.

This important book presents computer programming in a practical way that
enables you to write simple programs in a very short time, It emphasizes the
analysis and solution of real engineering problems. Here is basic informa-
tion on digital computation and numerical methods as well—all of it solidly
backed up by an ample supply of illustrative problems and engineering appli-
cations that make every theoretical concept clear and real.

ANALOGUE COMPUTATION LIBRARY

By STANLEY FIFER, President, Dian Laboratories, Inc. 1384 pages.
Four volumes (not sold separately).

Readily available in convenient library form are the facts, data, engineering
know-how, and best design procedures for solving the full range of problems
in the analogue computation field. From d-c feedback amplifiers, diodes,
and function generators . . . through amplifier design and network analyzers
. . . to potential analogues and advanced techniques and applications—this
four-volume Library covers the broad scope of analogue computer work.

McGRAW-HILL BOOK COMPANY

330 West 42nd Street New York, N.Y. 10036

U &
- o
>
%5
Z
(™)
>
O
@)
=
o
C
—
m .
o B
N :
< -
»
-
m §
= :

08720

§

PLANNING A
COMPUTER SYSTEM

PROJECT STRETCH

PLANNING A COMPUTER SYSTEM

PROJECT STRETCH

‘.. e
ENVCSAE

PLANNING A

CONTRIBUTORS

Richard S. Ballance
Robert W. Bemer
Gerrit A. Blaauw

Erich Bloch &ﬂq C
Frederick P. Brooks, Jr. %{ M
Werner Buchholz
Sullivan G. Campbell
John Cocke
Edgar ¥. Codd
Paul S. Herwitz
Harwood G. Kolsky . //Zié/»v \//,y//
Edward 8. Lowry
Elizabeth McDonough z
James H. Pomerene
Casper A. Scalzi

COMPUTER SYSTEM

PROJECT STRETCH

Edited by
WERNER BUCHHOLZ

SYSTEMS CONSULTANT
CORPORATE STAFF, RESEARCH AND ENGINEERING
INTERNATIONAL BUSINESS MACHINES CORPORATION

New York Toronto London 1962
McGRAW-HILL BOOK COMPANY

PLANNING A COMPUTER SYSTEM

Copyright © 1962 by the Mc¢Graw-Hill Book Company, Inc. Printed in
the United States of America. All rights reserved. This book, or
parts thereof, may not be reproduced in any form without permission
of the publishers. Library of Congress Calalog Card Number 61-10466
456789-MP=9
LN , 08720
YA .-

FOREWORD

The electronic computer has greatly contributed to scientific research;
it has reduced costs, shortened time scales, and opened new areas of
investigation. Increased use of computers, in turn, has created a need
for better computers. What is desired most often is a general-purpose
design with the best achievable memory capacity, speed, and reliability.

User experience has shown the need for considering more than these
fundamental properties in the design of a new computer. Unlike earlier
machines, whose capabilities were mainly functions of the properties of
individual components and units and not to any marked extent of their
organization or the user’s requirements, the Stretch computer is based
on a comprehensive joint planning effort involving both users and
designers. Their combined experience brought in many new considera-
tions. The term general purpose was given a broader definition in
Stretch. Arveas of special concern included the vocabulary of the com-
puter, parallel operation for greater speed and efficiency, error detection
and correction, and recovery from errors and other exceptional events.

The design phase for a new-generation computer is always a difficult
one. The potential user cannot predict accurately how the new tool
will be used or what new areas of research will open up. The designers
have to work with components for which such important data as how
these components behave en masse are lacking. The Stretch project,
i design as well as construction, has been successfully concluded. The
degree of success, however, can only be ascertained as experience in using
Streteh is accumulated.

This book forms a record of what is probably the first really comprehen-
~ive design effort for a new computer. It was written and edited by a
very competent group from the technical staff of the IBM Corporation,
including most of the principal designers of Stretch.

There is no doubt that still better computers will be needed. Although

A\

vi ForEwORD

the Stretch computer is now solving problems that could not be solved a
few months ago, many problems are known to exist for which even
Stretch is inadequate. This book will be invalnable as a guide and
reference source for computer development in the future.

Bengt Carlson
Los Alamos Scientific Laboratory
September 1961

PREFACE

Planning a computer system ideally consists of a continuous spectrum
of activity, ranging from theoretically analyzing the problems to be
solved to evaluating the technology to be used for the components.
When dealing with an electronic digital computer of more than modest
size that is intended to be used for fairly complex applications, one is
forced to split the planning spectrum into arbitrary segments, each seg-
ment being developed with due regard for its neighbors. This book is
mainly concerned with that segment that has to do with the selection of
an instruction set and related functional characteristics of a computer.
Except for cost and speed, these are the characteristics that do most to
distinguish one computer from the next.

This book is about the planning of a specific computer. Being specific
has both advantages and drawbacks. On one hand, the book reflects
the thoughts of one group, not the entire state of the art. It cannot be a
compendium of all the ideas, features, and approaches that have proved
interesting and useful in various computers. On the other hand, con-
centration on one design serves to crystallize the concepts in a way that
would be difficult to do with a hypothetical computer designed for the
sake of exposition. Morcover, a specific computer represents compro-
mises in bringing diverse and complex considerations together into a
roherent working entity, and these practical compromises are instructive
i themselves.

Although the discussion is in terms of a specific computer, the concepts
discussed are quite general. The computer chosen is the IBM 7030.
It is a recently developed computer incorporating many of the latest
advances in machine organization, and a number of these advances are
original or greatly improved over ecarlier versions. It is also a very large
and very fast computer. There is an advantage in choosing such a large
computer for examination, for it is practical to include quite a rich
vocabulary in large computers, and this affords an opportunity to exam-
ine features which may not all be so readily incorporated in a single com-

v

viii PRLFACE

puter of smaller size. The 7030, in particular, combines computing and
data-processing facilities that were previously available only in separate
computers. Thus a large computer may serve as a model from which to
select or adapt features for use in a smaller computer.

The 7030 computer was the outcome of Project Stretch, an IBM
research and development project aimed at a major advance in computer
technology and organization. To achieve a substantially improved com-
puter organization required more than a mere compilation of the best
features in existing machines and of new features already known. In
the hope of stimulating ideas for substantial improvements it was
decided to explore very thoroughly the basic structure of computers.
Several of the participants in these studies published papers, from time to
time, on computer organization in general and on particular conclusions
drawn for Project Stretch. This book consists partly of such material,
updated and edited for continuity. Much previously unpublished
material has been added to fill in major gaps.

The book is intended to complement the reference manual for the
7030,! although enough of the details of the 7030 are summarized in the
text or in the Appendix that the 7030 Reference Manualis not required for
understanding the material in this book. Where the manual recites in as
much detail as possible what the system does, this book is aimed at shed-
ding light on how it is done and why the system was designed the way it
is, as well as describing some alternative courses that were examnined and
rejected.

The book does not attempt to deal adequately with details of the design
and construction of the computer and its components, since these might
well fill another volume. Nor does it cover the programming techniques
used in the extensive compiling and supervisory programs written for the
system.

The book is aimed at a reader who already has a reasonably good
knowledge of how a stored-program computer is organized and pro-
grammed. It inay also serve as an advanced text to follow an elementary
course on digital computers.

Contents of Book

Chapter 1 is a short history of Project Stretch. Chapter 2 outlines the
philosophy that guided the design of the system. It emphasizes the need
for a consistent point of view among those responsible for the basic plan
of as complex a system as this computer.

A summary of the system in narrative form is given in Chap. 3. This
is intended to give the reader a fairly complete picture of the forest before

! “Reference Manual, 7030 Data Processing System,” IBM Data Processing Divis-
ion, White Plains, N.Y.

X Prrrace

parts of the system to round out the picture. Chapter 14 deals with the
various parts of the central processing unit, the circuits, and the method of
construction. One part of the central processing unit, which has been
called the look-ahead, receives more detailed treatment in Chap. 15, since
it represents a major departure from the design of earlier computers.
Chapter 16 explains the input-output exchange which controls the inde-
pendent operation of a number of input-output channels.

Chapter 17 describes the IBM 7951 Processing Unit, which extends
but is not a part of the Stretch system, having been developed under a
separate contract. The 7951 introdueces a completely new concept of
nonarithmetical processing, which is a much more powerful tool for oper-
ating on nonnumerical data than previous techniques. The complete
system includes an entire 7030 computer, all of whose facilities are availa-
ble for more conventional procedures. It seemed appropriate to include
in this book at least a brief account of a contemporary project related to
Stretch.

Acknowledgments

As part of a contractual agreement with the Los Alamos Scientific
Laboratory, the first recipient of a Stretch computer, a joint Los Alamos-
IBM mathematical planning group was set up to coordinate, advise,
and assist in the planning stage. Project Stretch owes a great deal to
the many invaluable contributions of the Los Alamos members, a group
which collectively represents as great a wealth of practical experience
in all phases of the application of large computers to large mathematical
problems as can be found anywhere. The Los Alamos group, ably led
by B. G. Carlson, included R. M. Frank, M. Goldstein, H. G. Kolsky
(now with IBM), R. B. Lazarus, E. A. Voorhees, M. B. Wells, D. F.
Woods, and W. J. Worlton. A second group was formed later to work
with IBM Applied Programming personnel on creating programming
systems for Stretch.

It is impossible to acknowledge individually the work of all the IBM
personnel who have made significant contributions to the material in this
book. All except one of the fifteen coauthors of the chapters partici-
pated directly in Project Stretch.

Some other individuals should be mentioned in connection with specific
chapters. The character set reported in Chap. 6 was developed jointly
by a group including E. G. Law, H. J. Smith, and F. A. Williams. W.
Wolensky contributed substantially to the variable-field-length system
outlined in Chap. 7. A great deal of the credit for the floating-point
system of Chap. 8 should go to D. W. Sweeney. Much of the carty
development of the control-word concept covered in Chap. 11 was stimu-
lated by discussion with Gi. M. Amidahl, 1. M. Boehm, J. E. Griffith, and

PREFACE Xi

R. A. Rahenkamp. J. D. Calvert was in charge of the design of the
input-output control system described in Chap. 12. Engineering
responsibility for major units deseribed in Chap. 14 rested with R. T.
Blosk (instruction unit), J. I'. Dirac (look-ahead unit), J. A. Hipp and
0. L. MacSorley (arithmetic units), and L. O. Ulfsparre (memory bus
unit), while R. E. Merwin and E. Bloch (the author of the chapter) had
over-all engineering direction for Projeet Stretch. The description of
the input-output exchange in Chap. 16 was based in part on an oral paper
by H. K. Wild,! who was in charge of the design of this unit and is
responsible for much of its logic. T. C. Chen contributed material for
programming examples shown in the Appendix.

Important work was contributed during the early stages of the project
by several whose names have not been mentioned so far, including J. W.
Backus, N. P. Edwards, P. E. I'ox, L. P. Hunter, J. C. Logue, and B. L.
Sarahan.

The editor wishes to acknowledge particularly the encouragement and
advice he received from S. W. Dunwell,'/who headed Project Stretch
from beginning to end.

Werner Buchholz

' H. K. Wild, The Organization of the Input-Output System of the Stretch Com-
puter, presented at the Auto-Math Sessions, Paris, June, 1959.

CONTENTS

Project Stretch

Avrchitectural Philosophy

Foreword
Preface
1.
2.
2.1.
2.2.
2.3.
24.
2.5.
3.

The Two Objectives of Project Stretch
Resources ,
Guiding Principles

Contemporary Trends in Computer Aldntectuu:

Hindsight

System Summary of IBM 7030

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12,
3.18.
3.14.
3.15.
3.16.
3.17.

System Organization
Memory Units .
Index Memory .
Special Registers .
Input and Output Famhtxes .
High-speed Disk Units
Central Processing Unit
Instruction Controls
Index-arithmetic Unit
Instruction Look-ahead
Arithmetic Unit
Instruction Set
Data Arithmetic .
Radix-conversion Operatxonq
Connective Operations
Index-arithmetic Operations .
Branching Operations .

x

vii

(2]

6

10
15

17

17
17
19
19
19
20
20
21
21
21
22
24
24
27
27
27
28

xiv C'ONTENTS

3.18.
3.19.
3.20.
3.21.

Transmission Operations .
Input-Output Operations .
New Features
Performance

4. Natural Data Units .

4.1.
4.2,
4.3.
4.4.

Lengths and Structures of Natural Data Units

Procedures for Specifying Natural Data Units.

Data Hierarchies
Classes of Operations .

5. Choosing a Number Base

5.1
5.2.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.

T

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.

Introduction .
Information Content .
Arithmetic Speed
Numerical Data
Nonnumerical Data
Addresses
Transformation
Partitioning of Memory
Program Interpretation
Other Number Bases .
Conclusion .

6. CharacterSet

Introduction

Size of Set

Subscts .

Expansion of Set

Code

Parity Bit

Sequence

Blank .

Decimal Digits
Typewriter Keyboard
Adjacency

Uniqueness .

Signs. . .
Tape-recording Convention
Card-punching Convention
List of 7030 Character Set

7. Variable-field-length Operation

7.5
7.2,

Introduction o
Addressing ol Vuriable-field-length Data

28
29
29
32

33
33
36
39
40

42

45
49
50
51
52
33
B}
56
58
o8

60
62
62
63
63
66
66
67
68
68
69
69
70
7l
71
72

=1 =~1 =

12.
13.
14.

Field Length

Byte Size

Universal Accumulabor

Accumulator Operand .
Binary and Decimal Arlthmetlc .
Integer Arithmetic

Numerical Signs

Indicators

Arithmetical Operatlons
Radix-conversion Operations .
Logical Connectives of Two Variables
Connective Operations

8. Floating-point Operation

8.1,
8.2,
8.3.
8.4.
8.9.
8.6.
8.7.
S.K.
8.9.

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.

8.18.
8.19.
8.20.

General Discussion
Problems of Fixed-point Arithmetic
Floating-point Arithmetic
Normalization . .
Floating-point bm"uhmms
Range and Precision
Round-off Error
Significance Checks
Forms of Floating-point Authmetlc
Structure of Floating-point Data

Floating-point Features of the 7030

Floating-point Instruction Format
Floating-point Data Formats
Singular Floating-point Numbers
Indicators .

Universal Aculmul&tor

Fraction Arithmetic
Floating-point-arithmetic Operatlons

Fixed-point Arithmetic Using Unnormalized

Floating-point Operations

Special Functions and Forms of Arlthmetlc

Multiple-precision Arithmetic
General Remarks

9. Instruction Formats

9.1.
9.2,
9.3.
9.4.
9.5.
9.6.

Introduction
EKarlier Instruction Languagee

Evolution of the Single-address Instructlon

Implied Addresses . .
Basic 7030 Instruction I¢ ormat&
Instruction Efficiency .

CONTENTS XV

92

92
94
97
OR
99
100
101
103
104

106
106
108
112
113
114
114

118
119
119
121

.. 122

122
122
124
125
126
127

X Vi

10.

11.

12.

CONTENTS

9.7.
9.8.

The Simplicity of Complexity

Relationship to Automatic Programming Languages .

Instruction Sequencing .

10.1. Modes of Instruction Sequencing

10.2. Instruction Counter

10.3. Unconditional Branching .

10.4. Conditional Branching

10.5. Program-interrupt System

10.6. Components of the Program- mterrupt System
10.7. Examples of Program-interrupt Techniques
10.8. Ezecute Instructions

10.9. Exzecute Operations in the 1030

Indexing

11.1. Introduction

11.2. Indexing Functions

11.3. Instruction Format for Indexmg

11.4. Incrementing

11.5. Counting

11.6. Advancing by One

11.7. Progressive Indexing

11.8. Data Transmission

11.9. Data Ordering

11.10. Refilling

11.11. Indirect Addressmg and Indlrect lnde\(mg
11.12. Indexing Applications .

11.13. Record-handling Applications

11.14. Tile Maintenance

11.15. Subroutine Control

11.16. Conclusion .

Input-Output Control

12.1.

12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
12.8.
12.9.

12.10.

A Generalized Approach to Connecting Input-Output

and External Storage.
Input-Output Instructions
Defining the Memory Arca
Writing and Reading .
Controlling and Locating .
An Alternative Approach
Program Interruptions
Buffering
[nterface
Operator Control of luput Output Umtﬁ

131
132

133

133
134
135
136
136
137
140
146
148

150

150
151
155
157
159
101
161
162
163
165
167
169
172
175
177
178

179

179
180
181
182
183
184
184
186
188
190

13.

14,

15.

16.

17.

CONTENTS

Multiprogramming

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.

Introduction

Multiprogramming Reqmremcntq . .
7030 Features that Assist \Iultlplogrammmg .
Programmed Logic.

Concluding Remarks .

References .

The Central Processing Unit

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.

Concurrent System Operation

Concurrency within the Central Processmg Umt .

Data Flow .
Arithmetic Unit
Checking
Component Count
Performance
Circuits
Packaging

The Look-ahead Unit

15.1.
15.2.
15.3.
15.4.
15.5.
15.6.
15.7.

General Deseription
Timing-simulation Program
Description of the Look-ahead Umt
FForwarding .

Counter Sequences.

Recovery after Interrupt .

A Look-back at the Look- ahcad

The Exchange

16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.

General Description

Starting a WRITE or READ Operatlon
Data Transfer during Writing

Data Transfer during Reading
Terminating a wriTE or READ Operation
Multiple Operations

CONTROL and LOCATE O])el‘d.thllS
Interrogating the Control Word .
Forced Termination

A Nonarithmetical System Extension .

17.1.
17.2.
17.3.

Nonarithmetical Processing
The Set-up Mode .
Byte-sequence Formation

xvii

192

192
193
195
197
200
201

202

202
204
204
208
216
216
217
218
223

228

228
230
238
240
241
246
247

248

248
250
250
251
252
252
252
253
253

254
254

258
259

xviii (!ONTENTS

17.4.
17.5.
17.6.
17.7.
17.8.
17.9.

17.10.
17.11.
17.12.

Pattern Selection

Transformation Facilities
Statistical Aids

The BYTE-BY-BYTE Instructlon
Monitoring for Special Conditions
Instruction Set

Collating Operations

Table Look-up Operations
Fxample

Appendix A. Summary Data . .

AL
A2
A3.
Ad.
A5,

List of the Larger IBM Stored-program Computers
Instruction Formats

List of Registers and Special Addresses

Summary of Operations and Modifiers .

Summary of Indicators

Appendix B. Programming Examples

B.1.
B.2.
3.3
B.4.

B.5.
B.6.

Index

Notation

Polynomial Ev aluat)on

Cube-root Extraction .

Matrix Multiplication

Conversion of Decimal \umbers bo a bloatmg pomt,
Normalized Vector

Editing a Typed Message .

Transposition of a Large Bit Matrn

260
261
263
263
264
265
266
267
267

273

273
275
276
277
287

299

292
295
296
298

299
301
303

305

PLANNING A COMPUTER SYSTEM

PROJECT STRETCH

Chapter 1
PROJECT STRETCH
by W. Buchholz

The computer that is discussed in this book was developed by the
International Business Machines Corporation at Poughkeepsie, N.Y.,
under Project Stretch. The project started toward the end of 1954.
By then IBM was producing several stored-program digital computers:
the IBM 650, a medium-sized computer; the IBM 704, a large-scale
computer primarily for scientific applications; and the IBM 705, a large-
scale computer primarily for business data processing. The 704 and 705
had already superseded the 701 and 702, which were IBM’s first com-
mercial entries into the large-computer field. Since the entire field was
still new, there had been little experience on which to base the design of
these machines, but by 1954 such experience was building up rapidly.
This experience showed that the early computers were basically sound
and eminently usable, but it was also obvious that many of the early
decisions would have been made quite differently in 1954 and that many
improvements had become possible.

At the same time, solid-state components were rapidly being developed
to the point where it appeared practical to produce computers entirely
out of transistors and diodes, together with magnetic core memories. A
computer made only of solid-state components promised to surpass its
vacuum-tube predecessors with higher reliability, lower power consump-
tion, smaller size, lower cost made possible by automatic assembly, and
eventually greater speed. The immincnce of new technology, together
with the knowledge of shortcomings in existing designs, gave impetus to
4 new computer project.

In 1955 the project was directed more specifically toward achieving,
on very large mathematical computing problems, the highest perform-
ance possible within certain limits of time and resources. If mostly
on-the-shelf components were used, a factor-of-10 improvement over the
IBM 704, the fastest computer then in production, appeared feasible.
Although this level of improvement would have been a respectable

1

2 Proseer SrrereH [CHap. 1

achievement, it was rejected as not being o large enough step. Instead,
an over-all performance of 100 times that of the 704 was set as the target.

The purpose of setting so ambitious a goal was to stimulate innovation
in all aspects of computer design. The technology available in 1955 was
clearly not adequate for the task. New transistors, new cores, new logi-
cal features, and new manufacturing techniques were needed, which,
although they did not yet exist, were known to be at least physically
possible. Even though the goal might not be reached in all respects, the
resultant machine would set a new standard of performance and make
available the best technology that could be achieved by straining the
technical resources of the laboratory. Hence the name Project Stretch.

The need for a computer of the power envisioned was clear. A num-
ber of organizations in the country had many important computing prob-
lems for which the fastest existing computers were completely inadequate,
and some had other problems for which even the projected computer of
100 times the speed of the existing ones would not be enough. Negoti-
ations with such organizations resulted in a contract with the U.S. Atomic
Energy Commission in late 1956 to build a Stretch system for the Los
Alamos Scientific Laboratory.

The early design objectives were described in 1956! in terms of certain
technological and organizational goals: :

Performance

An over-all performance level of 100 times that of the fastest machines
then in existence was the general objective. (It has since become evi-
dent that speed comparisons of widely different machines are very diffi-
cult to make, so that it is hard to ascertain how well this target has been
achieved. Using the TBM 704 as the reference point, and assuming
problems that can easily be fitted to the shorter word size, the smaller
memory, and the more limited repertoire of the 704, the speed ratio for
the computer actually built falls below the target of 100. On the other
hand, for large problems which strain the facilities of the 704 in one or
more ways, the ratio may exceed 100.)

Relzability

Solid-state components promised the much higher reliability needed
for satisfactory operation of a necessarily complex machine.
Checking

Extensive automatic checking facilities were intended to detect any
errors that occurred and to locate faults within narrow limits. Storage
devices were also to be equipped with error-correction facilities to ensure

1S, W. Dunwell, Design Objectives for the IBM Stretch Computer, Proc. Eastern
Joint Computer Conf., December, 1956, pp. 20-22,

CHar. 1] Prosect STRETCH 3

that data could be recovered in spite of an occasional crror. The pur-
pose was again to increase performance by reducing the rerun time often
needed in unchecked computers.

Generality

To broaden the area of application of the system and to increase the
effectiveness of the system on secondary but time-consuming portions
of any single job, it was felt desirable to include in one system the best
features of scientific, data-processing, and real-time control computers.
Furthermore, the input-output controls were to be sufficiently general to
permit considerable future expansion and attachment of new input-output
devices.

High-speed Arithmetic

A high-speed parallel arithmetic unit was to execute floating-poinft
additions in 0.8 microsecond and multiplications in 1.4 microseconds.
(The actual speeds are not as high, see Chap. 14.) This unit would not
be responsible for instruction preparation, indexing, and operand fetch-
ing, which were to be carried out by other sections of the system whose
operation would overlap the arithmetic.

Fditing

A separate serial computer unit with independent instruction sequen-
cing was visualized to edit input and output data of variable length in a
highly flexible manner. (It was later found desirable to combine the
serial and parallel units to a greater degree, so that they are no longer
independent, but the functional capability of hoth units was retained.)

Memory

The main memory was to have a cycle time of only 2 microseconds.
(All but the early production memories will indeed be capable of work-
ing at 2.0 wsec, but computer timing dictates a slightly longer cycle of
2.1 usec.) The capacity was to be 8,192 (later raised to 16,384) words
per unit.!

I'nput-Output Exchange

A unit resembling somewhat a telephone exchange was to provide
simultaneous operation of all kinds of input-output, storage, and data-
transmission devices,

! A second set of faster, though smaller, memory units was also postulated, but it
was later omitted because the larger units were found to give about the same over-all
performance with a greater capacity per unit cost. These units are still used, however,
to satisfy more specialized requirements of the 7951 Processing Unit described in
Chap. 17.

4 ProIrct STRETCH [CHar. 1

High-speed Magnelic Disks

Magnetic disk units were to be used for external storage to supplement
the internal memory. The target was a capacity of 1 (later raised to 2)
million words with a transfer rate of 250,000 (later lowered to 125,000)
words per second. These disk units permit a very high data flow rate
(even at the lower figure) on problems for which data cannot be con-
tained in memory.

As the understanding of the task deepened, this tentative plan was
modified in many ways. The functional characteristics of the actual
computer were developed in the years 1956 to 1958. This planning
phase, which is likened in Chap. 2 to the work of an architect planning
a building, culminated in a detailed programmer’s manual late in 1958,
During the same period the basic technology was also established. A
number of changes were subsequently made as design and construction
progressed, but the basic plan remained as in 1958.

The Stretch computer is now called the IBM 7030. It was delivered to
Los Alamos in April, 1961. Several other 7030 systems were under con-
struction in 1961 for delivery to other organizations with a need for very
large computers. We shall leave it to others to judge, on the basis of
subsequent operating experience, how close the computer comes to satis-
fying the original objectives of Project Stretch.

Chapter 2

ARCHITECTURAL PHILOSOPHY
by F. P. Brooks, Jr.

Computer architecture, like other architecture, is the art of determin-
ing the needs of the user of a structure and then designing to meet those
needs as effectively as possible within economic and technological con-
straints. Architecture must include engineering considerations, so that
the design will be economical and feasible; but the emphasis in architec-
ture is upon the needs of the user, whereas in engineering the emphasis is
upon the needs of the fabricator. This chapter describes the principles
that guided the architectural phase of Project Stretch and the rationale
of some of the features of the IBM 7030 computer which emerged.

2.1. The Two Objectives of Project Stretch
High Performance

The objective of obtaining a major inecrease in over-all performance
over previous computers had a triple motivation.

1. There were some real-time tasks with deadlines so short that they
demanded very high performance.

2. There were a number of verv important problems too large to be
tackled on existing computers. In principle, any general-purpose com-
puter can do any programmable problem, given enough time. In prac-
tice, however, a problem can require so much time for solution that the
program may never be ‘“debugged”’ because of machine malfunctions and
limited human patience. Moreover, problem parameters may change,
or a problem may cease to be of interest while it is running.

3. Cost considerations formed another motivation for high perform-
ance. It has been observed that, for any given technology, performance
generally increases faster than cost. A very important corollary is that,
for a fully utilized computer, the cost per unit of computation declines
with increasing performance. It appeared that the Stretch computer
would show accordingly an improved performance-to-cost ratio over

5

6 ARCHITECTURAL PHILOSOPHY ICHAP. 2

earlier computers. It appeared, further, that some computer users did
indeed have sufficient work to occupy fully an instrument of the pro-
posed power and could, therefore, obtain economic advantage by using
a Stretch computer.!

(feneralily

In addition to being fast, the Stretch computer was to be truly a
general-purpose computer, readily applicable to scientific ecomputing,
business data processing, and various large information-processing tasks
encountered by the military. In 1955 and 1956, when the general objec-
tives of Project Stretch were set, it was apparent that there existed a few
applications for a very-high-performance computer in each of these arcas.
There is no question that the new computer could have been made at
least twice as fast, with perhaps no more hardware, if it had been special-
ized for performing a very few specific computing algorithms. This
possibility was rejected in {favor of a general-purpose computer for four
reasons, each of which would have sufficed:

1. No prospective user had all his work confined to so few programs,
nor could any user be sure that his needs would not change significantly
during the life of the machine.

2. If a computer were designed to perform well on the entire class of
problems encountered by any one user, the shift in balance required to
make it readily applicable to other users would be quite small.

3. Since there existed only a few applications in each specialized area
and since the development costs of a computer of very high performance
are several times the fabrication costs, each user would in fact be acquir-
ing a general-purpose computer (containing some hardware he did not
especially need) more cheaply than he could have acquired a machine
more precisely specialized for his needs.

4. Since there are real limitations on the skilled manpower and other
facilities available for development efforts, it would not have been possi-
ble to develop several substantially different machines of this performance
class at once, whereas it was possible to meet a variety of needs for very-
high-performance computers with a single machine.

In sum, then, Project Stretch was to result in a very-high-performance,
general-purpose information-processing svstem.

2.2. Resources

A sharp increase in computer performance does not spring solely from
a strong justification for it; new technology is indispensable. It appeared
that expected technological advances would permit the design to be based

' W, C. Sangren, Role of Digital Computers in Nuclear Design, Nucleonics, vol. 15,
no. 5, pp. 56-60, May, 1957.

SEC. 2.3] GUIDING PRINCIPLES 7

upon new core memories with a 2-microsecond cyele time, new transistor
circuits with delays of 10 to 20 nanoseconds (billionths of a second) per
stage, and corresponding new packaging techniques. The new transistor
technology offered not only high speeds but a new standard of reliability,
which made it not unreasonable to contemplate a machine with hundreds
of thousands of components.

In order to complete the computer within the desired time span, it was
decided to accept the risks that would be involved in (1) developing the
technology and (2) designing the machine simultaneously.

The new circuits would be only ten to twenty times as fast as those of
the 704, and the new memories would be only six times as fast. Obvi-
ously, a new system organization was required if there was to be a major
increase in performance. It was clear that the slow memory speed would
be the principal concern in system design and the principal limitation on
performance. This fact influenced many decisions, among them the
selection of a long memory word, and prompted the devotion of con-
siderable effort to maximizing the use of each instruction bit.

Project Stretch benefited greatly from practical experience gained with
the first generation of large-scale electronic computers, such as the IBM
700 series. Decisions made in the design of these earlier computers had
necessarily been made without experience in the use of such machines.
At the beginning of Project Stretch the design features of earlier machines
were reviewed in the light of subsequent experience. It should not be
surprising that a number of features were found inadequate: some con-
siderations had increased in significance, others had diminished. Thus
it was decided not to constrain Stretch to be program-compatible with
carlier computers or to follow any existing plan. A completely fresh
start meant extra architectural effort, but this freedom permitted many
improvements in system organization.

A wealth of intensive experience in the application of existing com-
puters was made available by the initial customers for Stretch computers.
From these groups came ideas, insight, counsel, and often, because the
groups had quite diverse applications, conflicting pressures. The diver-
sity of these pressures was itself no small boon, for it helped ensure adher-
ence to the objective of general applicability.

2.3. Guiding Principles

The universal adoption of several guiding principles helped ensure the
conceptual integrity of a plan whose many detailed decisions were made
by many contributors,

Over-all Optimization

The objective of economic efficiency was understood to imply mini-
mizing the cost of answers, not just the cost of hardware. This meant

8 ARCHITECTURAL PHILOSOPHY [CHAP. 2

repeated consideration of the costs associated with programming, compi-
lation, debugging, and maintenance, as well as the obvious cost of machine
time for production computation. A consequent objective was to make
programming easier—not necessarily for trivial problems, but for prob-
lems worthy of the computer, problems whose coding in machine language
would usually be generated automatically by a compiler from statements
in the user’s language.

A corollary of this principle was the recognition that complex tasks
always entail a price in information (and therefore money) and that this
price is minimized by selecting the proper form of payment—sometimes
extra hardware, sometimes extra instruction executions, and sometimes
harder thought in developing programming systems, TFor example, the
price of processing data with naturally diverse lengths and structures is
easily recognized (see Chap. 4). 'This price appeared to be paid most
economically in hardware; so very flexible hardware for this purpose was
provided. Similarly, protection of memory locations from unwanted
alteration was accomplished much more economically with equipment
than it would have been with programming. A final minor example is
the STORE VALUE IN ADDRESS! operation, which inserts index values into
addresses of different lengths; by using address-length-determining hard-
ware already provided for other reasons, this instruction performs a task
that would be rather painful to program. Ior other tasks, such as pro-
gram relocation, exception-condition fix-up, and supervisory control of
input-output, hardware was considered, but programming techniques
were selected as more economieal.

Power instead of Simplicily

The user was given power rather than simplicity whenever an equal-
cost choice had to he made. It was recognized in the first place that
the new computer would have many highly sophisticated and experienced
users. It would have been presumptuous as well as unwise for the com-
puter designers to “protect” such users from equipment complexities that
might be useful for solving complex problems. In the second place, the
choice is asymmetric. Powerful features can be ignored by a user who
wishes to confine himself to simple techniques. But if powerful features
were not provided, the skillful and motivated user could not wring their
power from the computer.

[For thesc reasons, the user is given programmed access to the hardware

! Names of actual 7030 operations are printed in sMaLL caPs in this book. When
a name js used to denote a class of operations of which this operation is a member, it
is printed in ¢talics; also italicized are operations that exist in some computers but not
in this one. For example, operations of the add type built into the 7030 include App,
ADD TO MEMORY, ADD TO MAGNITUDE, etc., but not add absolute, which is provided in a
different manner by modifier bits.

Sec. 2.3] GuipinGg PrincIpPLES 9

wherever possible. He is given, for example, an interruption and address-
protection system whose use can be simple or very complex. He is given
an indexing system that can be used simply or in some rather complex
ways. If he chooses and if his problems are simple, he can write pro-
grams using floating-point arithmetic without regard for precision, over-
flow, or underflow; but if he needs to concern himself with these often
complex matters, he is given full facilities for doing so.

Generalized Features

Wherever specific programming problems were considered worthy of
hardware, ad hoc solutions were avoided and general solutions sought.
This principle came from a strong faith that important variants of the
same problem would surely arise and that generality and flexibility would
amply repay any extra cost. There was also certainty that the architects
could hardly imagine, much less predict, the many unexpected uses for
general operations and facilities. This principle, for example, explains
the absence of special operations to edit output: the problem is solved
by the general and powerful logical-connective operations. Similarly, a
single uniform interruption technique is used for input-output communi-
cation, malfunction warning, program-fault indication, and routine detec-
tion of expected but rare exceptional conditions.

Specialized Equipment for Frequent Tasks

There is also an antithetical principle. For tasks of great frequency
in important applications, specialized equipment and operations are pro-
vided in addition to general techniques. This, of course, accounts for
the provision of floating-point arithmetic and automatic index modifi-
cation of addresses.

To maximize instruction density, however, specialized operations of
less than the highest frequency are specified by extra instructions for
such operations rather than by extra bits in all instructions. In short,
the information price of specifying a less usua!l operation is patd when it
is used rather than all the time. For example, indirect addressing,
multiple indexing, and instruction-counter storing on branching each
require half-word instructions when they are used, but no bits in the
basic instructions are used for such purposes. As a result of such detailed
optimization, the 7030 executes a typical scientific program with about
20 per cent fewer instructions of 32 bits than does the 704 with 36-bit
instructions on a corresponding program.

Systematic Instruction Set

Because the machine would be memory-limited, it was important to
provide a very rich instruction set so that the memory accesses for an

10 ARCHITECTURAL PHILOSOPHY [CrAP. 2

instruction and its operand would accomplish as much as possible. As it
has developed, the instruction set contains several thousand distinguish-
able operations. Such a wealth of function could be made conceptually
manageable only by strong systematization. For example, there is only
one conditional branch instruction for testing the machine indicators, but
this is accompanied by a 6-bit code to select any one of the 64 machine
indicators, a bit to specify testing for either the on or the ¢ff condition,
and another bit to permit resetting of the indicator. Thus there are only
a few basic operations and a few modifiers. In all, the number of oper-
ations and modifiers is less than half the number of operations in the
IBM 709 (or 7090), although the number of different instruction actions
is over five times that of the 709,

Such systematization, of course, implies symmelry in the operation
code set—each modificr can be validly used with all the operations for
which it can be indicated in the instruction, and, for most operations, the
logical converses or counterparts are also provided. Thus the floating-
point-arithmetic set includes not only the customary vivioe where the
addressed operand constitutes the divisor, but also a RECIPROCAL DIVIDE
which addresses the dividend.

Provision for New Operating Techniques

Iixperience with the IBM 650 and 704 computers had demoustrated
that two computers whose spceds differ by more than one order of magni-
tude are different in kind as well as in degrec. This confirmed the sus-
picion that the 7030 would be more than a super-704 and would be
operated in a different way. An early effort was made, therefore, to
anticipate some of the operating techniques appropriate for such an
instrument, so that suitable hardware could be provided.

The most significant conclusion from these investigations was that an
important operating technique would be muliiprogramming, or time-
sharing of the central computer among several independent problem
programs. This now familiar (but yet unexploited) concept was new in
1956 and viewed widely with suspicion.

A second conclusion was that the proposed high-capacity, high-data-
rate disk storage would contribute substantially to system performance
and would permit the 7030 to be operated as a scientific computer with-
out very-high-speed magnetic tapes.

2.4. Contemporary Trends in Computer Architecture

Over the years computer designs have gone through a constant and
gradual evolution shaped largely by experience gained in many active
computing centers. This experience has heavily influenced the architec-
rure of Stretch. In several instances the attack on a problem cxposed

Sec. 2.4] ConteMrorary Trexps 18y CoMPUTER ARCHITECTURE 11

by experience with existing computers differs in Stretch from the solution
presently adopted in most computer installations. For example, with
existing large computers the only way to meet the high cost of human
intervention is to minimize such intervention; in the Stretch design the
attempt has been, instead, to make human intervention much cheaper.

The effect of several of these contemporary design trends on the Stretch
architecture will be examined here.

Concurrency

Most new computer designs achieve higher performance by oper-
ating various parts of the computer system concurrently. Concurrent
operation of input-output and the central computer has been available
for some years, but some contemporary designs go considerably beyond
this and allow various elements of the central computer to operatc
concurrently.'

A distinction may be made (see Chap. 13) between local concurrency,
providing overlapped execution of instructions that are immediate neigh-
hors in the instruction stream of a single program, and nonlocal con-
currency, where the overlap is between nonadjacent instructions that
may belong to different programs. The usual input-output concurrency
ix of the nonlocal type; since the instructions undergoing simultaneous
execution are not closely related to one another, the need for interlocks
and safeguards is not severe and may, to a large extent, be accomplished
by supervisory programming.

Local concurrency is used extensively in the central processing unit of
the 7030 to achieve a high rate of instruction flow within a single instruc-
tion sequence. Unlike another scheme,? in which each specialized unit
performs its task and returns its result to memory to await call by the
next unit, the 7030 uses registers; this is because memory speed is the
main limitation on 7030 computer speed. Several of these registers form
a high-speed wvirtual memory (the look-ahead unit of Chap. 15), which
receives instructions and operands from the real memory in advance of
execution by the arithmetic unit and receives the results for storing while
rhe arithmetic unit proceeds with the next operation. Up to eleven suc-
cessive instructions may be in the registers of the central processing unit
at various stages of execution: undergoing address modification, awaiting
access to operands in memory, waiting for and being executed by the
arithmetic units, or waiting for a result to be returned to memory.

Considerable effort was expended on automatic interlocks and safe-
guards, so that the programmer would not have to coneern himself with

t P. Dreyfus, Programming Design Features of the GAMMA 60 Computer, Proc.

Fastern Joint Computer Conf., December, 1958, pp. 174-181.
2 Tbid.

12 ARCHITECTURAL PHILOSOPHY [CHaPp. 2

the intricate logic of local concurrency. The programmer writes his pro-
gram as if it were to be executed sequentially, one instruction at a time.

To make a computer with automatic program-interruption facilities
behave this way was not an easy matter, because the number of instruc-
tions in various stages of processing when an interrupting signal occurs
may be large. The signal may have been the result of one of these
instructions, requiring interruption before the next instruction is exe-
cuted. Since the next several instructions may already be under way,
it must be possible to go back and cancel their effects. The amount of
overlap varies dynamically and may even be different for two executions
of the identical instruction sequence; so it would be almost impossible
for the programmer to do the backtracking. Therefore, the elaborate
safeguards provided to ensure sequential results from nonsequential oper-
ation do more than satisfy a desire to simplify programming; the pro-
grammer would be lost without them.

Multiprogramming

Time-sharing (as of a computer by multiprogramming) and concur-
rency are two sides of one coin: to overcome imbalance in a computer
system, faster elements are time-shared and slower elements are made to
operate concurrently. In the 7030, for example, the single central com-
puter uses several concurrently operating memory boxes, and the single
computer-memory system may control in turn many concurrently oper-
ating input-output devices.

Even though per-operation cost tends to decrease as system perform-
ance increases, per-second cost increases, and it therefore hecomes more
important to avoid delaying the calculator for input-output. To
take full advantage of concurrent input-output operation for a computer
of very high performance demands that input data for one program be
entered while a preceding program is in control of calculation and that
output take place after calculation is complete. IFor this reason alone,
it was apparent from the beginning that multiprogramming facilities
would be needed for Project Stretch.

A second motivation for multiprogramiming is the need for a closer man-
machine relationship. As computers have become faster, the increasing
cost of wasted seconds has dictated increasing separation between the
problem sponsor and the solution process. This has reduced the over-all
efficiency of the problem-solving process; for, in fact, the more complex
problems solved on faster calculators are harder, not easier, for the spon-
sor to comprehend and therefore need more, not less, dynamic interaction
between solution process and sponsor. There can be no doubt that much
computer time and more printer time has been wasted because the prob-
lem sponsor cannot observe and react as his program is being run on large

Stc. 2.4] CoNnTEMPORARY TRENDS IN ('OMPUTER ARCHITECTURE 13

computers like the IBM 704. This difficulty promised to become more
acute with the even more complex problems for which Stretch was needed.

With multiprogramming it becomes economically practical for a person
seated at a console to observe his program during execution and interrupt
it while considering the next step. Since the computer can immediately
be switeched to another waiting program, the user is not charged with the
cost of an idle computer. Thus the extension of multiprogramming to
manual operation offers, once the technique has been mastered, a tre-
mendous economic breakthrough: it provides a general technique for
solving the problem of loss of contact between sponsor and solution. A
sponsor can now interact with his problem at his own speed, paying only
the cost of delaying the problem, not that of delaying the machine. 'This
should materially accelerate that large proportion of scientific compu-
tation which is expended on continual and perpetual refinement and
debugging of mathematical models and the programs that embody them.
The solution of most such problems is characterized more closely by a
fixed number of interactions between computer and sponsor than by a
fixed amount of computer time.

Multiprogramming also makes it economically practical to enter new
data and to print or display results on line, that is, via directly connected
input and output devices; whereas the economics of previous computers
forced card-to-tape and tape-to-printer conversion off line, that is, with
physically separate devices, so that only the fastest possible medium,
magnetic tape, would be used on the computer. On-line operation of
input and output is emphasized in the Stretch philosophy, because it
removes much of the routine operator intervention and reduces the over-
all elapsed time for each run of a problem.

Multiprogramming makes several demands upon system organization.
Most obvious is the requirement of ample and fast storage, both internal
and external. Of equal importance is an adequate and flexible inter-
ruption system. Also, in the real world, time-sharing of a computer
among users with ordinary human failings requires memory protection,
=0 that each user can feel secure withiu his assigned share of the machine.
Debugging is difficult enough at best, and most users would sacrifice
efficiency rather than tolcrate difficulties caused by the errors in other
programs. [t proved possible in the 7030 to provide a rudimentary but
zufficient form of memory protection without affecting speed and with a
modest amount of hardware.

The equipment for multiprogramming was, however, limited to two
essential features: program interruption and address monitoring, and
these were designed to be as flexible aspossible. Other multiprogramming
functions are left to the supervisory program, partly because that arrange-
ment appeared to be efticient, but primarily because no one could be sure

14 ARCHITECTURAL PRILOSOPHY |CHap, 2

which further facilities would prove useful and which would prove merely
expensive and overly rigid inconveniences. Several years of actual multi-
programming experience will undoubtedly demonstrate the value of other
built-in features.

If multiprogramming is to be an operating technique, a radically differ-
ent design is needed for the operator’s console. If several independent
programs are to be run, each with active operator intervention, there
must be provision for multiple independent consoles. Each console must
be incapable of altering any program other than the associated problem
program. For active intervention by the problem sponsor (rather than
by a special machine operator), the console must be especially convenient
to use. Finally, if a supervisory program is to exercise complete control
in scheduling programs automatically, it must be able to ignore unused
console facilities. Although intelligent human intervention is prized
highly, routine human intervention is to be minimized, so as to reduce
delays and opportunities for error.

The operating console was designed to be simply another input-output
device with a convenient assortment of switches, keys, lights, digital dis-
plays, and a typewriter. A console interpretive program assigns mean-
ing to the bits generated by each switch and displayed by each light.
There are no maintenance facilities on the operator’s console, and com-
pletely separate maintenance consoles are provided.

Automatic Programming

Undoubtedly the most important change in computer application tech-
nique in the past several years has been the appearance of symbolic
assemblers and problem-language compilers. Studies showed that for
Stretch at least half of all computer time would be used by compiler-
produced programs; all programs would be at least initially translated
by an assembler.

A most important implication of symbolic-language programming is
that the addressing radix and structure need not be determined for coder
convenience. Fairly complex instruction formats can be used without
causing coding errors, and operation sets with hundreds of diverse oper-
ations can be used effectively.

Many proposals for amending system architecture to simplify com-
pilers were considered. The most far-reaching of these concerned the
number of index registers, which should be infinity or unity for greatest
ease of assignment during compilation. The alternatives were investi-
gated in considerable detail, and both turned out to reduce computer
performance rather sharply. Indeed, reduced performance was implied
by most such proposals. These studies resulted in a belief which is not
shared by all who construct compilers; this is that total cost to the user is

SEc. 2.5] HiINDSIGHT 15

minimized not by restricting system power to keep compilers simple but
by enhancing facilities for the task of compilation itself, so that com-
pilers can operate more rapidly and efficiently.

Information Processing

The arithmetic power of a4 computer is often ouly ancillary to its power
of assembling, rearranging, testing, and otherwise manipulating infor-
mation. To an increasing extent, bits in even a scientific computer
represent things other than numerical quantities: elements of a pro-
gram metalanguage, alphabetic material, representations of graphs, bits
scanned from a pattern, etc. In the light of this trend, it was therefore
important to match powerful arithmetical with powerful manipulative
facilities. These are provided in the variable-field-length arithmetic
and, in unique form, in the variable-field-length connective operations,
which operate upon bits as entities rather than components of numbers.
Good variable-field-length facilities are, of course, particularly important
for business and military data processing.

2.5. Hindsight

As the actual shape of the 7030 began to emerge from the initial
planning and design stages, it became apparent that some of the earlier
thoughts had to be revised. (Some of these changes have already been
noted parenthetically in Chap. 1.) The bus unit for linking and schedul-
ing traffic between many memory boxes and many memory-using units
turned out to be a key part of the design. The original algorithms for
multiplication and division proved inadequate with available circuits,
and new approaches were devised. It became clear that division, especi-
ally, could not be improved by the same factor as multiplication. Serial
(variable-field-length) operation turned out to be considerably slower
than expected; so serial multiplication and division were abandoned, and
the variable-field-length multiplication and division operations were rede-
signed to use the faster parallel unit.

The two separate computer sections that were postulated originally
were later combined (see Chap. 1), and both sets of facilities were placed
under the control of one instruction counter. Although the concept of
multiple computing units, closely coupled into one system, was not found
practical for the 7030 system, this concept still seems promising.! In
fact, the input-output exchange coupled to the main computer in the
7030 is a simplified example, since the exchange is really another com-
puter, albeit a highly specialized one with an extremely limited instruc-
tion vocabulary.

' A. L. Leiner, W, A. Notz, J. L. Smith, and A, Weinberger, PILOT: A New Multi-
ple Computer System, J. ACM, vol. 6, no. 3, pp. 313-335, July, 1959,

16 ARCHITECTURAL PHILOSOPHY [CHap. 2

Some architectural features proved unworkable. Rather late in the
design period, for example, it became clear that the method of handling
zero quantities in floating-point arithmetic was ill-conceived; so this
method was abandoned, and a better concept was devised.

Two excellent features, each of which contributes markedly to system
performance, were found to have inherently conflicting requirements;
their interaction prevents either feature from realizing its full potential.
The program-interrupt system is intended to permit unpredicted changes
in instruction sequencing. The instruction look-ahead unit, on the other
hand, depends for its effectiveness on the predictability of instruction
sequences; each interruption drains the look-ahead and takes time to
recover. This destroyed the usefulness of the interrupt system for fre-
quent one-instruction fix-ups and required the addition of built-in excep-
tion handling in such cases as floating-point underflow.

On the other hand, some improvements became possible as the design
progressed. It turned out, for example, that the equipment for perform-
ing variable-field-length binary multiplication with the parallel arithmetic
unit could easily be made to do binary-decimal and format conversions;
so this facility was added.

There are in the 7030 architectural features whose usefulness is still
unmeasured. A few are probably mistakes. Others seem to be innova-
tions that will find redefinition and refinement in future computers, large
and small. Still other features appear now to be wise for very-high-
performance computers, but must be considerably scaled down for more
modest machines. Experience has, however, reinforced the system archi-
tects’ belief in the guiding principles of the design and in the general
applicability of these principles to other computer-planning projects.

Chapter 3

SYSTEM SUMMARY OF IBM 7030
by W. Buchholz

3.1. System Organization

The IBM 7030 is composed of a central processing unit, one or more
memory units, a memory bus unit, an input-output exchange, and input-
output devices. Optionally, high-speed magnetic disk storage units and
a disk control unit may be added for external storage. A typical system
configuration is shown in Fig. 3.1.

Information moves between the input-output devices and the memo-
ries under control of the exchange. The central processing unit (CPU)
actually consists of several units that may operate concurrently: an
instruction unit, which controls the fetching and indexing of instructions
and executes the instructions concerned with indexing arithmetic; a look-
ahead unit, which controls fetching and storing of data for several instruc-
tions ahead of the one being executed, so as to minimize memory traffic
delays; a parallel arithmetic unit, for performing binary arithmetic on
floating-point numbers at very high speed; and a serial arithmetic unit,
for performing binary and decimal arithmetic, alphanumeric operations,
and logical-connective operations on fields of varying lengths.

Logically the CPU operates as one coordinated unit upon a succession
of instructions under the control of a single instruction counter. Care 1s
taken in the design so that the user need not concern himself with the
intricacies of overlapped operations within the CPU.

The memory bus unit coordinates all traffic between the various
memory units on the one side and, on the other side, the exchange, the
disk control, and the various parts of the CPU.

3.2. Memory Units

The main magnetic core memory units have a read-write cycle time of
2.1 microseconds. A memory word consists of 64 information bits and
S check bits for automatic single-error correction and double-error
detection,

18 SYSTEM SuMmmasky or IBM 7030 ([Cnar. 3

The address part of every instruction provides for addressing directly
any of 262,144 (2!'%) word locations. Addresses are numbered from 0
up to the amount of memory provided in a particular system, but
addresses 0 to 31 refer to index words and special registers instead of
general-purpose memory locations. ,

Each unit of memory consists of 16,384 (2'4) words. A system may
contain one, two, or a multiple of two such units, up to a maximum of

Memory units

M M M M M
A A
1 Memory out bus
y Memory in bus
Yy
Memory bus
unit
A Al
Data 1«.‘:. Instructions and data
a
i L Controls L
s s Gmn e pwe wvn e - —— —— - II'ISWC“OI'I
Exchange ok _Controls 0 htrol
ll“ [TTI synchronizer . Index Index
unit arithmetic unit fe memory
Channels for
input-output Look-ahead
units :
(Magnetic tapes n %'glrx:;c
Magnetic disks Parailel
sg:;g: n arithmetic unit
Consoles Serial
Displays High-speed arithmetic unit
Inquiry stations disk units)
Data transmission Central
ete) proce;tslng
uni

Fia. 3.1. 7030 system.

sixteen units. KFach memory unit operates independently. In systems
with two units or more, several memory references may be in process
at the same time. In order to take better advantage of this simultaneity,
successive addresses are distributed among different boxes. When a sys-
tem comprises two units, successive addresses alternate between the two.
When a system comprises four or more units, the units are arranged in
groups of four, and successive addresses rotate to each of the four units
in one group, except for the last group which may consist of only two
units with alternating addresses.

SEc. 3.5) Inrur AND OvuruTr FAcCILITIES 19

3.3. Index Memory

A separate fast magnetic core memory is used for index registers.
Since index words are normally read out much more often than they are
altered, this memory has a short, nondestructive read cycle of 0.6 usec.
The longer clear-and-write cyele of 1.2 psec is taken only when needed.

The index memory is directly associated with the instruction unit of
the computer. It cannot be used to furnish instructions, nor can it be
used directly with input or output.

The sixteen index registers have regular addresses 16 to 31, which
correspond to abbreviated 4-bit index addresses 0 to 15. The first
register cannot participate in automatic address modification since an
index address of 0 is used to indicate no indexing,.

3.4. Special Registers

Many of the registers of the machine are directly addressable. Some
of these are composed of transistor flip-flops; others are in the fast index
memory or in main memory. The addressable registers are assigned
addresses 0 to 15. These locations cannot be used for instructions or for
input or output data.

Address 0 always contains zero. It is a bottomless pit; regardless of
what is put in, nothing comes out. The program may attempt to store
data at address 0, but any word fetched from there will contain only 0
data bits.!

The remaining fifteen addresses correspond to machine registers, time
clocks, and control bits. They are listed in the Appendix.

3.5. Input and Output Facilities

Input to the system passes from the input devices to memory through
the exchange. The exchange assembles successive 64-bit words from the
flow of input information and stores the assembled words in successive
memory locations without tying up the central processing unit. The
CPU specifies only the number of input words to be read and their loca-
tion in memory ; the exchange then completes the operation by itself.

The exchange operates in a similar manner for output, fetching suc-
ressive memory words and disassembling them for the output devices
independently of the CPU. External storage devices, such as tapes and
disks, are operated via the exchange as if they were input and output.

The exchange has the basic capability of operating eight independent
input-output units, This eight-channel exchange can be enlarged by

T A distinctive type (0, 1) is used in the text for the bits of binary numbers or codes,

and regular type (0, 1, 2, . . .) for decimal digits. For example, 10 is a binary
aumber (fwo) and 10 a decimal number (ten).

20 SYsTEM SUMMARY or IBM 7030 [Crar. 3

adding more eight-channel groups. Each of these channels can handle
information at a rate of over 500,000 bits per second. The exchange as a
whole can reach a peak data rate of 6 million information bits per second.

A wide variety of input-output units can be operated by the exchange.
These include card readers and punches, printers, magnetic tapes, oper-
ator’s consoles, and typewriter inquiry stations. Several of some kinds
of units can be attached to a single exchange channel; of the several units
on a single channel, only one can be operated at a time.

Provisions have been made in the design of the exchange for adding up
to 64 more channels operating simultaneously but at a much lower data
rate per channel. This extension is intended for tying the computer eco-
nomically into a large network of low-speed units, such as manually
operated inquiry stations.

3.6. High-speed Disk Units

For many large problems, the amount of core storage that it is practical
to provide is not nearly large enough to hold all the data needed during
computation. Earlier systems have been severely limited by the rela-
tively low data rates of magnetic tapes or the relatively low capacities of
magnetic drums available for back-up storage. To avoid having the
over-all 7030 performance limited by the same devices, it was essential
to develop an external storage medium with high capacity and high data-
transfer rates. A magnetic disk storage unit was designed for this
purpose.

The disk units read or write at a rate of 125,000 words per second, or
8 million bits per second over a single channel (a rate 90 times that of the
IBM 727 tape available with the 704). One or more units, each with a
capacity of 2 million words, may be attached. Access to any location of
any disk unit requires of the order of 150 milliseconds. Once data trans-
mission has started it continues at top speed for as many consecutive
words as desired, without further delays for access to successive tracks.

The control unit, or disk synchrontzer, functions like the input-output
exchange except that it is a single-channel device designed specifically to
handle the high data rate of the disks. The exchange and the disk syn-
chronizer can operate independently and simultaneously at full speed.
An error-correcting code is used on the disks, and any single errors in data
read from the disks are corrected automatically by the control unit before
transfer to memory.

3.7. Central Processing Unit

The central processing unit performs arithmetical and logical oper-
ations upon operands taken from memory. The results are generally
left in accumulator registers to be further operated on or to be stored in

=ec. 3.10] InsTRUCTION LOOK-AHEAD 21

memory subsequently. Operations are specified one at a time by instruc-
tions, which are also taken from memory. KEach instruction usually
specifies an operation and an operand or result. The operand specifi-
cation is made up of an address and an index address. Part of the index
word contents are added to the address in the instruction to obtain an
«flective address. The effective address designates the actual location of
the operand or result. The additions needed to derive the effective
address and to modify index words are performed in an index-arithmetic
unit which is separate from the main arithmetic unit.

3.8. Instruction Controls

An instruetion may be one word or one half word in length. Full-
and half-length instructions can be intermixed without regard to word
houndaries in memory.

Instructions are taken in succession under control of an instruction
~ounter. The sequence of instructions may be altered by branching oper-
ations, which can be made to depend on a wide variety of conditions.
Automatic interruption of the normal sequence can also be caused by
many conditions. The conditions for interruption and control of branch-
ing are represented by bits in an indicator register. The interrupt sys-
tem also includes a mask register for controlling interruption and an
‘nterrupt address register for selecting the desired set of alternate pro-
grams. When it is needed, the address of the input or output unit
~ausing an interruption can be read from a channel address register which
~an be set up only by the exchange.

The interpretation and execution of instructions is monitored to make
sure that the effective addresses are within boundaries defined by two
noundary registers.

3.9. Index-arithmetic Unit

The index-arithmetic unit, which is part of the instruction-control unit,
:ontains registers for holding the instructions to be modified and the index
words used in the modification. When index words themselves are oper-
zted on, some of these registers also hold the operand data. The index-
g operations include loading, storing, adding, and comparing. The
‘ndex-arithmetic unit has gates for selecting the necessary fields in index
«nd instruction words and a 24-bit algebraic adder.

3.10. Instruction Look-ahead

After initiating a reference to memory for a data word, the instruction
“init passes the modified instruction on to the look-ahead unit. This unit
nolds the relevant parts of the instruction until the data arrive, so that

29 SystEM SuMmMmary or IBM 7030 [CHAP. 3

both the operation and its operand can be sent to the arithmetic unit
together. Since access to the desired memory unit takes a relatively long
time, the look-ahead will accept several instructions at a time and
initiate their memory references, so as to smooth out the memory traffic
and obtain a high degree of overlap between memory units. Thus
the unit ‘“looks” several instructions ahead of the instruction being
executed and anticipates the memory references needed. This reduces
delays and keeps the arithmetic unit in as nearly continuous operation
as possible.

Indexing and branching instructions are completed by the instruction
unit without involving the main arithmetic unit. The instruction unit
receives its own operands, whereas the look-ahead receives operands for
the main arithmetic unit. The look-ahead, however, is responsible for
storing all results for both units, so that permanent modification of stored
information 1s done in the proper logical sequence. Interlocks in the
look-ahead unit ensure that nothing is altered permanently until all pre-
ceding instructions have been executed successfully.

3.11. Avithmetic Unit

The arithmetic unit cousists of a parallel and a serial section. The
parallel section essentially performs floating-point arithmetic at high
speed, and the serial section performs fixed-point arithmetic and logical
operations on fields of variable length. Both sections share the same
basic registers and much of the control equipment; so they may be treated
as one unit.

For simplieity, the arithmetic unit may be considered to be composed
of 4 one-word registers and a short register. This conceptual structure is
shown in Fig. 3.2, where the full-length registers are labeled A, B, C, and
D, and the short register is labeled 5. The registers marked A and B
constitute the left and right halves of the accumulator. The registers
marked ¢ and 0D serve only as temporary-storage registers, receiving
words from memory and (in serial operations only) assembling results to
be stored in memory. The short register S stores the accumulator sign
bit and certain other indicative bits.

In floating-point addition the operand from memory is sent to register
C. (Since floating-point operands will fit into register C, register D is not
needed here.) This operand is then added to the contents of register A
or of both registers A and B, depending on whether single- or double-
length addition has been specified. The result is placed in A or in 4
and B. As an alternative (adding to memory), the result may be
returned to the location of the memory operand instead.

In floating-point multiplication one factor is the number in accumu-
lator register A. The other factor comes from memory and is trans-

Skc. 3.11] ARITHMETIC UNIT 23

From memory
T - -"--"-""—"""—-—- =
lEXponent Fraction. 01 DI
|
E xponent » Parallel adder
dd - and shifter
ACCEr | shift
contro

o= To memory
y

T
ExponentI Fraction A4 | Fraction (continued) Bl

Left half Right half Accumulator
accumulator accumulator sign

PARALLEL OPERATION

From memory From memory

!

| c D]
[1 |
To memory To memory
Serial adder
To-memory and logical
operation unit
K’ Bit selection
-0 switch
- -
l Al 5] s]
Left half Right half Accumulator
accumulator accumulator

sign
SERIAL OPERATION

Fic. 3.2. Simplified register structure of arithmetic unit.

ferred to register C. The factors are now multiplied together, and the
product is returned to the accumulator register, replacing the previous
contents. In cumulative multiplication one factor must have been previ-
ously loaded into a separate factor register (not shown). The other fac-
-or again comes from memory and goes to C. The factors are multiplied
as in ordinary multiplication, but the product is added to the contents of
he accumulator register.

In floating-point division the dividend is in the accumulator, and the
divisor is brought from memory to register C. The quotient is returned

24 SysTEM SuMMmary oF IBM 7030 [CHaP. 3

to the accumulator, and the remainder, if any, goes to a remainder register
(not. shown).

In serial variable-field-length operations the operand field may occupy
parts of two adjacent memory words, and both words if necessary are
fetched and placed in registers C and D. The other operand field comes
from A and B. The operands are selected a few bits at a time and
processed in serial fashion. The result field may replace 4 and B, or it
may replace selected bits of ' and D whose contents are then returned to
memory. Binary multiplication and division operands are stepped into
the parallel mechanism a few bits at a time, but the actual operation is
performed in parallel.

Other registers are the transit register, a full-word location, which may
be used for automatic subroutine entry; and two 7-bit registers, the all-
ones counter and the left-zeros counter, which are used in connective oper-
ations to hold bit counts developed.from the results.

All registers mentioned above, except memory registers ' and D, are
also addressable as explicit operands.

3.12. Instruction Set

The operations available may be divided into these categories:

Data arithmetic
1. Floating-point arithmetic
2. Variable-field-length arithmetic
Radix conversion
Connectives
Index arithmetic
Branching
Transmission
Input-Output

The categories are briefly described in the next few sections.

3.13. Data Arithmetic

The arithmetical instruction set includes the conventional operations
LOAD, ADD, STORE, MULTIPLY, and prvipE. Modifier bits are available to
change the operand sign. The operations subtract and add absolute are
obtained by use of sign modifiers to the App instruction and are not pro-
vided as separate operations. The same modifiers make it possible to
change the sign of a number that is to be loaded, stored, multiplied, or
divided.

A convenient feature of the MmuLTIPLY Operation is that one of the fac-
tors is taken from the accumulator rather than from a separate register,
and this factor may be the result of previous computation. Similarly,

Sec. 3.13] Dara ARITHMETIC 25

pIvIDE places the quotient in the accumulator, and so the quotient is
available directly for further arithmetical steps.

Extensions of the basic set of arithmetical operations permit adding
and counting in memory, rounding, cumulative multiplication, compari-
<on, and further variations of the standard app operation.

One of these variations is called App To MaGNITUDE. This operation
Jiffers from app in that, when the signs and modifiers are set for sub-
-raction, it does not allow the result sign to change. When the result
<ign would change, the result is set instead to zero. This operation is
aseful in dealing with nonnegative numbers or in computing with dis-
rontinuous rates.

The important arithmetical operations are available in the floating-
point mode as well as in the (fixed-point) variable-field-length mode.

Floating-poinl-arithmelic Operalions

Floating-point (FLP) arithmetic uses a 64-bit floating-point word con-
-1sting of a signed 48-bit binary fraction, a signed 10-bit binary exponent,
+nd an exponent flag to indicate numbers that have exceeded the avail-
able exponent range. Arithmetic can be performed in either normalized
r unnormalized form.

The 48-bit fraction (mantissa) is longer than those available in earlier
-omputers, so that many problems can be computed in single precision,
which would previously have required much slower double precision.
When multiple-precision computation is required, however, it is greatly
‘acilitated by operations that produce double-length results.

To aid n significance studies, a noisy mode is provided in which the
ow-order bits of results are modified. Running the same problem twice,
~rst in the normal mode and then in the noisy mode, gives an estimate
~f the significance of the results.

Variable-field-length-arithmetic Operalrons

The class of variable-field-length (VFL) arithmetic is used for data
srithmetic on other than the specialized floating-point numbers. The
~mphasis here is on versatility and on economy of storage. Arithmetic
may be performed directly in either decimal or binary radix. Individual
=umbers, or fields, may be of any length, from 1 to 64 bits. Fields of
1ifferent lengths may be assigned to adjacent locations in memory, even
= this means that a field lies partly in one memory word and partly in
she next. Each field may be addressed directly by specifying its position
snd length in the instruction; the computer takes care of selecting the
=emory words required and altering only the desired information.

Numerical data may be signed or unsigned. For unsigned data the
sgn is simply omitted in memory; this saves space and avoids the task of

26 SysteM SumMmary ofF IBM 7030 [CHaPp. 3

assigning signs where there are none to begin with. Unsigned numbers
are treated arithmetically as if they were positive.

VFL arithmetic is sometimes called infeger arithmetic, because in multi-
plication and division the results are normally aligned as if the operands
were integers. It is possible, though, to specify that operands be offset
so as to obtain any desired alignment of the radix point. An offset can
be specified in every instruction, and there is no need for separate instruc-
tions to shift the contents of the accumulator.

A significant feature of the VFL pivipE operation is that it will pro-
duce meaningful results regardless of the magnitude of the dividend or
the divisor (provided these fall within the bounds of numbers generally
acceptable to the arithmetic unit). The only and obvious exception is a
zero divisor. 'This greater freedom eliminates much of the scaling previ-
ously required before a pivip® instruction could be accepted.

All VFL-arithmetic operations are available in either decimal or binary
form, and the choice can be made by setting 1 modifier bit. Decimal
multiplication and division, however, are not built into the computer
directly; instead their operation codes are used to cause an automatic
entry to a standard subroutine which can take advantage of high-speed
radix conversion and binary multiplication or division. Thus decimal
multiplication and division are faster but just as convenient to program
as if they had been built in for execution by the serial decimal circuits.

An operation is provided that causes an automatic entry to a sub-
routine. A field of this instruction may be used to distinguish up to
128 pseudo operations.

One use of the VFL-arithmetic operations is to perform general arith-
metic on portzons of floating-point words, instruction words, or index
words. The floating-point and index-arithmetic instruction classes do
contain special addition and comparison instructions for the most fre-
quent operations on partial words of this kind, but the VFL operations
provide a complete set for all purposes.

Alphabetic and alphanumeric fields of various lengths are handled by
VFL-arithmetic operations as if they were unsigned binary numbers,
regardless of the character code. There is actually no fixed character
code built into the computer, although a certain code with many desira-
ble features is recommended. Alphanumeric high-low comparisons are
made by a simple binary subtraction of two fields. The only require-
ment is that the binary numbers representing each character fall into the
comparing sequence desired for the application. If the code used for
input or output does not conform to this comparing requirement, special
provisions facilitate the translating of the code to any other form by
programming a table look-up.

The number of bits used to encode individual characters may be varied.
Thus a decimal digit may be compactly represented by a binary code of

SEc. 3.16] INDEX-ARITHMETIC OPERATIONS 27

4 bits, or it may be expanded to 6 or more bits when intermixed with
alphabetic information.

3.14. Radix-conversion Operations

A group of radix-conversion operations is provided to convert integers
between decimal and binary form in either direction. These operations
are also used in implementing the decimal multiplication and division
pseudo operations mentioned in the preceding section.

3.15. Connective Operations

Instructions that combine bits by logical and, or, and exclusive or func-
tions have been available in earlier computers. These and many other
nonarithmetical data-handling operations are here replaced in simple and
orderly fashion by connective operations that provide many logical facili-
ties not previously available. These operations are called conNEcT,
CONNECT TO MEMORY, and CONNECT FOR TEST.

Each connective operation specifies a memory field of any length from
1 to 64 bits, as in integer arithmetic. Each bit in the memory field is
logically combined with a corresponding bit in the accumulator; the
resulting bit replaces the accumulator bit in coxnNEcT, the memory bit in
CONNECT TO MEMORY, or neither in coNNEcT FORrR TEST. All three oper-
ations make available certain tests and counts of 0 and 1 bits.

There are sixteen possible ways in which to combine, or connect, two
bits. FEach of these logical connectives can be specified along with each
of the three connective operations. Besides the connectives and, or, and
excluswe or, there are connectives to match bits, to replace bits, and to
set bits to O or 1. Either or both of the operands may be inverted.

Although the term logical connectives suggests evaluation of elaborate
expressions in Boolean algebra, the connective instructions have impor-
tant everyday applications, such as the assembling and converting of
input-output data. Their power lies in their ability to specify fields of
any length and in any position in memory, either single test bits or strings
of adjacent bits.

3.16. Index-arithmetic Operations

The address part of any instruction may be modified by adding a num-
ber in a specified index register before the address is used. Normally both
the instruction and the index register remain unchanged. To alter the
index registers is the function of the index arithmetic operations.

These operations include loading, storing, incrementing, and comparing
of index values. The index value is a signed number, and additions are
algebraic. One of the instructions allows up to sixteen index values to be
added together for use in further indexing. Another indexing instruction
provides the function of indirect addressing.

28 SysteM Summary or IBM 7030 [CuaAPp. 3

Each index word contains a count to keep track of the number of times
a program loop has been traversed. Counting may be coupled with
incrementing of the index value. A third field in each index word
specifies a refill address from which another index word may be loaded
automatically.

Instructions generally specify one of a set of fifteen index registers for
address modification, but the number of available registers may be readily
supplemented by other index locations in memory through the operation
RENAME. This operation identifies one designated index register with
one of these memory locations and does the bookkeeping necessary to
cause this memory location to reflect changes in the index register.

Although indexing instructions are provided to change index values
and counts explicitly, it is possible to use another mode, called progressive
indexing, in which the index quantities may be advanced each time they
are used.

3.17. Branching Operations

The branching operations either conditionally or unconditionally alter
the instruction counter so as to change the course of a program. The
number of these operations is not large, but modifiers are available to
provide a great deal of flexibility.

All machine-state indicators, such as sign, overflow, error, and input-
output conditions, are collected in one 64-bit indicator register. The
BRANCH ON INDICATOR instruction may specify any one of these 64 indi-
cators as the condition to be tested. A modifier specifies whether branch-
ing is to occur when the indicator is on or off. Another modifier may
cause the indicator tested to be reset.

A second operation, BRANCH ON BIT, permits the testing of a single bit
anywhere in memory with one instruction. The tested bit may also be
modified. This instruction places a virtually unlimited number of indi-
cators under the direct control of the program.

A hybrid operation combines advancing of an index word with testing
and branching. Thus the most common program loops may be closed
with one half-length instruction, although full indexing flexibility requires
two half-length instructions to specify the necessary quantities.

Branch instructions may be coupled with another operation to store
the instruction-counter contents at any desired location before branching.
This simplifies reentry to a program from a subprogram.

3.18. Transmission Operations

The operation TRaNsMIT provides the facilities to move a block of data
from one memory area to another. A second operation, swap, inter-
changes the contents of two memory areas.

SEc. 3.20] NEw FEATURES 29

3.19. Input-Output Operations

There are basically two operations for controlling input-output and
external storage units: READ and WRITE. Each instruction specifies the
unit desired and a memory area for the data to be read or written.

The memory area is specified by giving the address of a control word
which contains the first data address in memory and a count of the num-
ber of words to be transferred. The control word also contalns a refill
address which can specify the address of another control word. Control
words can thus be chained together to define memory areas that are not
adjacent.

Control words have the same format as index words and can be used
for indexing. This important feature means that the same word can be
used first for reading new data, then for indexing while those data are
being processed, and finally for writing the data from the same memory
area.

Various modifications of READ and wriTE are provided to fit different
circumstances. Other instructions perform various control {functions.

All instructions for operating external units are issued by the computer
program bhut are executed independently of the program. Several data
transfers can thus take place simultaneously, all sharing access to
memory. Signaling functions inform the program when each external
process is completed.

All external units, regardless of their characteristics, are controlled by
the same set of instructions. They are distinguished only by a number
assigned to each unit.

3.20. New Features

New programming features not identified with specific instructions are
summarized in this section.

Addressing

In instructions where this is meaningful, the position of a single bit in
any word of memory can be addressed directly. A complete word-and-
bit address forms a 24-bit number. The word address (18 bits) is on the
left and the bit address (6 bits) on the right of that number. TFor the
purpose of bit addressing, the entire memory may be regarded as a set
of consecutively numbered bits. Since the number of bits in a memory
word (64) is a power of 2 and all addressing is binary, the address of the
rightmost bit (bit 63) of one memory word is followed immediately by the
address of the leftmost bit (bit 0) of the word with the next higher word
address. Memory-word boundaries may be iguored by the program.

Other instructions use only full memory words as data, and these pro-

30 SYSTEM SUMMARY or IBM 7030 [CHar. 3

vide space for only 18 bits of address. The bit address is assumed to be 0.
Still other instructions refer to half words and use 19 bits of address. The
extra bit is immediately to the right of the word address, and the remain-
ing 5 bits of the bit address are treated as Os.

Index words provide space for a sign and 24 bits in the value field,
so that all addresses may be fully indexed to the bit level. The entire
24-bit instruction address, with Os inserted where instructions have fewer
address bits, participates in the algebraic addition during address modi-
fication. When less than 24 bits are needed in the effective address, the
[ow-order bits are dropped.

Many internal machine registers are directly addressable as if they
were memory. The accumulator may, for example, be added to itself;
this is accomplished by addressing the accumulator as the operand of an
ADD instruction. One important use of this facility is in preserving and
restoring the contents of internal registers by transmitting them as a
block to or from memory with one TRANSMIT Instruction,

Instead of selecting a location from which to fetch data, the address
itself may serve as data in many operations. It is then called an immedsi-
ate address. Such data are limited to at most 24 bits. This feature is
very convenient for defining short constants without having to provide
the space and time for separate access to memory. Immediate address-
ing is not available for sending data to memory, because the address
space is needed to select memory.

The term direct address is used to distinguish the usual type of address
which gives the location of an operand or of an instruction.

The term ¢ndirect address refers to an address that gives the location of
another address. An indirect address may select an immediate address,
a direct address, or yet another indirect address. Indirect addresses are
obtained in the 7030 by the instruction LoAD VALUE EFFECTIVE, which
places the effective address found at the specified memory location into
an index register for indexing a subsequent instruction. Multiple-
level indirect addressing is obtained when LoAD VALUE EFFECTIVE finds
at the selected location another instruction LOAD VALUE EFFECTIVE which
causes the indirect addressing process to be repeated.

Program Interruption

A single program-interrupt system serves for responding to asynchro-
nously occurring external signals and for monitoring exceptional condi-
tions generated by the program itself. When one of the indicators in the
previously mentioned indicator register comes on, the computer selects
an instruction from a corresponding position in a table of fix-up instruc-
tions. This instruction is sandwiched into the program currently being
executed at whatever time the interruption occurs. The extra instruc-

Sec. 3.20] NEw FEATURES 31

tion is usually one which first stores the current instruction-counter set-
ting, to preserve the point at which the current program was interrupted,
and then branches to the desired fix-up routine. The table of fix-up
instructions may be placed anywhere in memory.

Means are provided to select which indicators may cause interruption
and when interruption will be permitted. Priorities can thus be estab-
lished. If more than one interrupt condition should occur at a time, the
system will take them in order. Special provisions are made to permit
interruptions to any level to occur without causing program confusion.

Address Monitoring

Address-monitoring facilities are provided to assist in the debugging of
new programs and to protect already debugged programs against errone-
ous use of their memory locations by other programs being run simulta-
neously in multiprogrammed fashion. The two address-boundary registers
are used to define the desired memory area. One register specifies the
lower boundary and one the upper boundary. All effective operand
addresses and all instruction addresses are compared against the two
addresses in the registers to see whether the address in question falls
inside or outside the boundaries. By setting a control bit, it is possible
{o define either the area inside the boundaries or the area outside the
boundaries as the protected area. Whichever it is, any attempt to fetch
an instruction or data word from the protected area or to store new infor-
mation in the protected area may be suppressed, and the program may
be interrupted immediately. Thus it is possible to use the address-
monitoring system to make sure either that a given program does not
stray outside its assigned area or that no program will interfere with
whatever is stored ¢nside the area.

The built-in monitoring system is much more effective than the alterna-
tive of screening each program in advance to make sure that all addresses
are proper. It is very difficult to predict by inspection all the effective
addresses that may be generated during execution by indexing, indirect
addressing, or other procedures, especially in a program that may contain
errors.

Clocks

An interval timer is built in to measure elapsed time over relatively
short intervals. It can be set to any value at any time, and an indicator
shows when the time period has ended. This indicator will cause auto-
matic program interruption.

To provide a continuous indication of time, a time clock is also fur-
nished. This clock runs continuously while the machine is in operation;
its setting cannot be altered by the programmer. It may be used to time

32 SysTEM SuMMmary oF IBM 7030 [CHaP. 3

longer intervals for logging purposes or, in conjunction with an external
calibrating signal, to provide a time-of-day indication.

3.21. Performance

Since high performance is so important an objective of the 7030, a sum-
mary of the system should give some examples of its internal speed. Such
speeds cannot be quoted with any accuracy, however.

In earlier computers it has been a relatively simple matter to compile
a list of exact times or time formulas for the execution of each operation.
To determine the time taken to execute a program it was necessary only
to add the times required for each instruction of the program. Describ-
ing the internal speed of the 7030 with any accuracy is a much more diffi-
cult task because of the high degree of overlap among the independently
and asynchronously operating parts of the central processing unit.

A few raw arithmetic speeds are listed in Chap. 14. The list is not
complete and includes only the time spent by the arithmetic unit oper-
ating on data already available. There would be little point in extend-
ing the list; instruction and data fetches, address modification, and the
execution of indexing and branching instructions all overlap the arith-
metic-execution times to varying degrees; so the figures could not be
meaningfully added together.

Rules of thumb and approximation formulas may be developed in time,
but their accuracy would depend considerably on the type of program.
The degree of overlap varies widely between problems requiring a pre-
dominance of floating-point arithmetic or variable-field-length arithmetic
or branching or input-output activity. A zero-order approximation,
which could be off by a factor of 2 or more, might be to count 2.5 micro-
seconds for each instruction written. To arrive at a more accurate figure
it is necessary to take into account the complex timing relationships of a
suecession of specific instructions in considerable detail. Even then it
would be difficult to measure the effect on performance of the long float-
ing-point word, the large core memory, the very large capacity of the
high-speed disk units, the overlapped input-output data transfer, or the
interrupt system. The best approach is still to program a complete
problem and then time the actual execution on the 7030 itself,

Chapter 4

NATURAL DATA UNITS
by G. A. Blaauw, F. P. Brooks, Jr., and W. Buchholz

4.1. Lengths and Structures of Natural Data Units

In considering automatic data-processing lasks generally, we identify
five common types of operations: floating-point operations, fixed-point
arithmetic, address arithmetic, logical manipulations, and editing oper-
ations. Each of these has a natwral data unit distinet from those of the
other types in length, variability of length, or internal structure. An
ideal computer would permit each operation to address its natural data
unit directly, and this addressing would be simplified by utilizing all
properties of the natural data unit that are constant.

It should be observed that the natural data unit is associated with an
individual manipulative operation, not with a whole program. In any
program there will be different kinds of operations and, therefore, differ-
ent natural data units. Furthermore, the same datum is generally the
object of different kinds of operations. l'or example, a floating-point
datum may be developed as a unit in a computation, its components
then used in radix-conversion arithmetic, and the characters of the result
finally used as units in editing for printing. The format of a datum is
usually made to agree as closely as possible with the natural data unit
of the operations most often performed on that datum.

The natural data unit for most technical computation has come to be
the floating-point number, because the use of floating-point arithmetic
frees the mathematician from many details of magnitude analysis. This
unit has considerable internal structure: the representation of a single

Note: Sections 4.1 and 4.2 of this chapter are taken from a previously published
paper by the same authors: Processing Data in Bits and Pieces, TRE Trans. on Elcc-
tronic Compulers, vol. EC-8, no. 2, pp. 118-124, June, 1959; also “Information Process-
ing,”” UNESCO (Paris), R. Oldenbourg (Munich), and Butterworths (London), 1960,
pp. 375-382.

33

34 NATURAL Data UniTs {Cuar. ¢

number includes a number sign, a fraction, an exponent, an exponent
sign, and bits for flagging numbers (Fig. 4.1). The fraction part of this
unit might be made to vary widely in length, depending upon precision
requirements, but the preeision analysis that such variation would imply
would often be as burdensome as the detailed magnitude analysis that
floating-point operation eliminates. Moreover, these operations must
proceed with the utmost speed, and a fixed format facilitates parallel
arithmetic. For these reasons, floating-point numbers follow a rigid for-

~ Word boundary
_~ Exponent flag Y

i t =
-l (L6 ite Fraction (48 bits) i
le 2 Number si j 63fo
gn R
\\ Exponent sign 3 flag bits

Fic. 4.1. Data unit for floating-point arithmetic.

~r

mat. The datum is usually long—in this machine it uses 64 bits, with
the fraction occupying 48 of these.

Fized-point arithmetic is used on problem data when magnitude analy-
sis is trivial, such as that encountered in business or statistical calcu-~
lations. Figure 4.2 shows some examples. Numbers may or may not
be signed. If the arithmetic is binary, the data unit has a simple struc-

/' Word boundary

i

T L T T T T
0100000000] 1010101} 0000001001010110§010000101000
1 1 L

S —1

37 47 54 63I0 6 18

Field | 256 |42 40 2 5 6|4 2 -

Type Unsigned | Signed Unsigned Signed
binary | binary decimal decimal
Length | 10 bits | 7 bits 16 bits 12 bits

F16. 4.2. Data units for fixed-point arithmetic.

ture. If the arithmetic is decimal, the number has an inner structure
of digits individually encoded in binary form. Whether the unit is simple
or complex in structure, its natural length is quite variable, with typical
numbers varying from 4 to 40 bits in length.

Address arithmetic operates upon a natural data unit whose structure is
similar to that of unsigned fixed-point data, whether decimal or binary
(Fig. 4.3). The unit has, however, one or a few standard lengths because
of the fixed size of memory, and the length of the unit is relatively short.

Pure logical manipulations—whether used as the main part of a pro-

Stc. 4.1] LENGTHS AND STRUCTURES OF NATURAL Data Ux1rs 35

gram, as in combinatorial analysis, or for controlling the course of the
program-—operate upon a very simple data-unit structure composed of a
group of bits, each of which has an independent meaning (Fig. 4.4).
This distinguishes such operations from arithmetic, which uses bits as
components of numbers. Since in logical operations field length depends
upon the number of operations that can be paralleled, lengths vary; but

Pa Word houndary Index addresses
Y / (A bns)m
I

Address J | Op.| I ?

Address Op.

Jo (/ 18 28 32 (51 55 50 |0
Full word address (18 bits) Half word address (19 bits)
32 BIT INSTRUCTION

Y

? Address Op.} I Address Op. I 3

32 (56 60 0 19 28 32
Word and bit address (24 bits)
64 BIT INSTRUCTION
Fr16. 4.3. Data units for address arithmetic.

since no carries are propagated, restriction to fields of arbitrary lengths is
not too burdensome,

A final class, editing operations, includes all operations in which data
are transformed from one format to another, checked for consistency with
a source format, or tested for controlling the course of the program. The

A and /Word boundary
-1 not T
3 011100101 0011101000 0100000010 j
50 e |1 11 26 36
X Y X ARY)

F16. 4.4. Data units for logical manipulations.

natural data unit for such operations varies widely (Fig. 4.5). All natural
data units of the previous four types of operation undergo editing oper-
ations in the normal course of their processing, and there are other units
unique to editing operations. For example, a group of data fields may
be moved as a unit within memory to assemble records for output.
Editing operations not only possess the most complex natural data
structures, but they also use the most widely varying natural field lengths.
Yor some manipulations, the natural unit is the single character; for other

36 Naruran Dars Unirs [CHAP. 4

manipulations, such as comparison or transmission, the natural data unit
is a field of many characters or a complete record.

Besides these five kinds of natural data units that can be identified for
operations commonly built into computers, other natural data units are
suitable for operations usually encoded with subroutines, such as matrix
arithmetic, complex arithmetic, and multiple-precision arithmetic. As
these larger units are necessarily composed of components that themselves
are the data units of some built-in operation, they need not be considered
separately.

e Word boundary

T T T T T

T T T -
@LOO‘IMOOO 110011001101001000C01101000000000000111111011101C0 b'l 0010110
] [i]] | 1

54]47 38(40 45
2 8 rfT D 0 e (Blank) J . m{o 5

Employee & Name K
number Sex Marital } Number of
status dependents

¢

Fia. 4.5. Data units for editing operations.

4.2. Procedures for Specifying Natural Data Units

The previous section has shown how natural data units for different
operations differ in structure, length, and variability of length. These
diversities imply that more information is required for the specification
of the natural data units than would be required if they were alike. The
computer designer can choose the manner in which the user will pay this
information price, but the price must be paid.

The data and instructions for any given problem may be considered
to consist of a single stream of natural data units, without computer-
prescribed spacers, groupings, etc. The computer designer must furnish
a memory structure and an addressing system with which the individual
components of a stream of natural data units are to be manipulated.
The programmer must map the data-unit stream of his problem into a
spaced and grouped stream suitable for the memory organization that
the computer designer provides. This mapping requires some of the
computer’s power and necessarily introduces some inefficiencies. The
more complex and difficult the mapping, the lower is the performance of
the whole system.

The classical approach to this problem was to ignore it. For sim-
plicity, early computer designers assumed (1) that provisions for han-
dling the object data of fixed-point-arithmetic operations would suffice
and (2) that the natural data unit for these operations was the single
number of constant length. These two assumptions led to a simple,

SEc. 4.2] PROCEDURES FOR SPECIFYING NATURAL Dara Uxsirs 37

homogeneous, fixed-word-length memory organization. Since neither
assumption was caompletely true, the information price of diversity was
paid by the user in reduced performance and more complex programming.

When performing operations other than fixed-point arithmetic, such as
editing and address arithmetie, the programmer shifted, extracted, and
packed in order to get at the natural data unit of the operation. When
faced with data of varying lengths, the programmer had two options as
to the method of paying the informatiou price. He could (1) place each
unit in a different machine word or (2) pack several shorter units into a
single word. (Since the machine word was usually picked to be a reason-
able upper bound on natural data lengths, he was less often faced with
the problem of manipulating units that required several words.) The
price of using a different word for each data unit is reduced memory
capacity and increased operating times for input-output and arithmetic
units. The price of packing memory cells is paid in memory capacity
for the packing instructions, in execution time, and in programming time.

Clearly, one way to improve the performance of a computer by chang-
ing its organization is to pay the price of diverse data units in the form
of more complex hardware. This implies a memory structure that can
be composed of variable-length cells. Several computers have been so
organized. Thesc computers have been intended primarily for business
data processing, where editing operations are of great importance and
where the assumption of constant-length data units is particularly poor.
As the importance of nonarithmetical operations in all kinds of calcu-
lations became more apparent, a variable-cell-length memory organiza-
tion became more desirable for any high-performance general-purpose
computer.

There are several methods of achieving variable cell size. If the
memory is to be addressed rather than scanned, the cell lengths may
vary from cell to cell and from problem to problem, but the positions
(and therefore the lengths) of cells must remain constant within a single
computation, That is, cells at different addresses may have different
lengths, but a change in the contents of a cell must not change its length.
On tape, where seanning is used instead of addressing, this constraint
does not hold, and some computers allow item lengths on tape to vary
by deleting either leading numerical zeros or trailing alphabetic blanks.

A simple way of organizing a memory of different cell sizes is to pro-
vide a fixed complement of assorted sizes; this is done, for example, in the
IBM 604 caleulator. This rather inflexible arrangement was discarded
for the IBM 7030 in favor of a second method, where the smallest data
component is made addressable; a cell is defined by specifying both the
position of one component in memory and the extent of the cell. Because
of the requirements of pure logical operations and of editing operations,

38 Naruran Data Unirs {Cuar. 4

addressing resolution was provided all the way down to the individual
bit level. Each bit in the memory has a unique address.

There are several techniques for specifying cell extent. The first is to
use a unique combination of data bits as a partition between cells. This
method is used to separate numerical fields in the IBM 705. The use of
partition symbols implies reduced memory capacity due to the symbols
themselves and, more seriously, exclusion of the partition-bit combination
from the set of permissible data symbols. This difficulty alone would
have precluded use of partitions between memory cells in the 7030.
Arbitrary bit combinations arise in assembling instructions, reading data
from external devices, and performing binary computations, and such
activities could not be excluded. TFurthermore, in any computer where
memory speed is the limiting factor on performance, it is highly desirable
that each bit fetched from memory contain 1 bit of information. Use of
extra symbols and restrictions on bit combinations both reduce infor-
mation content.

A variation of the partition-bit approach is to provide space for
marker bits outside the data storage space. In the smaller IBM 1401
computer, for example, the cell size is variable to the character level, and
the high-order end of a cell is indicated by a separate bit available in
each character position. This is a simple technique to implement, and
it avoids restrictions on the data symbols permissible. The obvious infor-
mation price of this scheme is 1 extra bit per character. An additional
price must be paid in instructions to set up and alter the positions of
these marks, which, being extraterritorial in nature, are awkward to
bring in from the input. Moreover, this approach becomes relatively
more costly as data storage space increases in comparison to program
storage space.

A third method of specifying cell extent is to use a Procrustean-bed
technique in which data are transferred from memory to a register until
the register is full. Transfers to memory likewise proceed until the
register is completely copied. This technique is used for alphabetic
fields in the 705. The disadvantage is that the technique requires extra

instructions for changing the
length of thereceiving register
’:’;‘."Zﬁ‘éﬁi&e.fei‘,‘?ff&“éﬂii‘i‘di,'i'o st or Lrekroustze | or the use of several receiving
K ot Sitica i i celebrated lesendary registers of different lengths.
bed, and, as the case required, either stretched or cut off

their les to adapt them to its length, Hence, the bed A fourth technique, and

of Procrustes or Praocrustean bed, an idea, theory, or

:}r'%ti?grii%\\ﬁhlxlce)afucts, human nature, or the like, would be that adopted, is to provide

(By permission from Webster's “New International the information on cell extent
Dictionary,” 2d ed., copyright 1959 by G. & C. Merriam . . .
Company, Springfield, Mass., publishers of the Mer- | In the instructions that use

riam- Webster dictionaries.) that cell This can be done

SEc. 4.3] Dara HiERARGHIES 39

by specifying one of several masks, by specifying beginning and end, or
by specifying beginning and length. In order to simplify indexing, the
last method was selected. Iach instruction that can refer to variable-
length cells contains the complete address of the leftmost (high-order) bit
of the cell and the length of the cell; however, instructions that do not
need to refer to cells of varying length do not contain all this information.

4.3. Data Hierarchies

Most data-processing tasks involve a hierarchy of data units which,
in ascending order of size, are frequently called character, field, record,
and file. Each structural unit consists of one or more of the preceding
units. The reason for the existence of this structure is that an associ-
ation of meaningful data units may have a meaning of its own. To use
a well-worn example, a payroll record consists of an employee identifica-
tion number and related data, such as name, pay rate, and amounts, each
of which is a field which, in turn, is made up of alphabetic or numerical
characters. This record as a whole may be sorted into identification
number sequence with other employees’ records, if the fields remain
associated with the identification; if the fields were all sorted individually,
their meaning would be destroyed. Again, a file of last week’s payroll
records can be distinguished from a file of this week’s records if they
remain together.

It has been found useful to define a similar hierarchical structure for
the machines that process the data, but often for different reasons. The
number of bits transmitted in parallel at one time between the computer
and input-output units is one such data unit; that transmitted in parallel
between computer and memory is another, often different. Efficient
operation of input-output units usually requires the definition of still
jarger groupings of data.

The distinction between the natural requirements of the data and those
of the machine has often been obscured by the fact, already referred to,
that the user may be forced to adapt his data to the characteristics of the
machine. Thus the same terms are frequently used for both purposes.
We prefer to use two sets of terms and to point out similarities by listing,
side by side, terms that have a corresponding ranking:

Natural data hierarchy Machine data hierarchy
Bit Bit
Character Byte
Field Word
Record Block
File Reel of tape, tray of cards,

web of paper, ete.

40 Naturar, Data Units (Cuar. 4

Bit 1s widely used in both contexts and, since it causes no confusion,
the term will be retained for both.

Character is usually identified with a graphic symbol, such as 2 numeri-
cal digit, alphabetic letter, punctuation mark, or mathematical symbol.

Field denotes a group of characters processed together in a single
numerical or logical operation. Examples are a number, a name, an
address. A field is identified by its location in storage or in a record.
(The term goes back to punched-card usage. [iem has also been used.)

A record is a group of fields that are processed together. Correspond-
ing fields in successive records normally occupy the same relative position
within the record. A record is identified by one or more identifier fields
or by its location in storage or in a file.

A file is a group of records, which are usually processed one record at a
time. A file may be identified by an identifier record.

The actual usage of the above terms depends largely on the application,
and many applications require additional steps in the hierarchy which
may not have generic names.

Terms used here to describe the strueture imposed by the machine
design, in addition to b, are listed below.

Byte denotes a group of bits used to encode a character, or the number
of bits transmitted in parallel to and from input-output units. A term
other than character is used here because a given character may be repre-
sented in different applications by more than one code, and different codes
may use different numbers of bits (i.e., different byte sizes). In input-
output transmission the grouping of bits may be completely arbitrary
and have no relation to actual characters. (The term is coined from bite,
but respelled to avoid accidental mutation to bit.)

A word consists of the number of data bits transmitted in parallel from
or to memory in one memory cvele. Word size is thus defined as a
structural property of the memory. (The term catena was coined for
this purpose by the designers of the Bull GAMMA 60 computer.)

Block refers to the number of words transmitted to or from an input-
output unit in response to a single input-output instruction. Block size
is a structural property of an input-output unit; it may have been fixed
hy the design or left to be varied by the program.

4.4, Classes of Operations

Several classes of operations are provided in the 7030 to deal directly
with different natural data units. In particular, the variable-field-length
system to be described in Chap. 7 has been designed to overcome the
limitations of the rigid word structure of the memory and permit the
program to specify fields of any length, up to the rather high limit of

SEc. 4.4] CLasskEs 0F OPERATIONS 41

64 bits. This system is used for fixed-point-arithmetic, alphanumerie,
and logical operations, since the data units for these classes of operations
can be specified in the same way.

The floating-point operations (see Chap. 8) deal specifically with
floating-point numbers. As has been mentioned, it is advantageous here
to make the length of the floating-point number the same as that of the
memory word.

Address arithmetic is performed primarily by indexing operations,
which are discussed in Chap. 11, and these operations are designed to
handle the various address lengths encountered in the 7030.

Editing operations require a combination of these classes of operations
and others, like data transmission, that are not so readily classified.
Data transmission and input-output operations (see Chap. 12) have the
restriction that only full 64-bit words can be transmitted. Thus a record
of a given natural length must be approximated by a block that is a
multiple of 64 bits long. To save the few extra bits in the last word of a
block would have greatly increased the amount of equipment and was not
considered worth while.

Chapter 5

CHOOSING A NUMBER BASE
by W. Buchholz

5.1. Introduction

One of the basic choices the designers of a digital computer must make
is whether to represent numbers in decimal or binary form. Many fac-
tors enter into this choice. Where high performance is a major goal, as
in the IBM 7030, high arithmetical speed is of the essence and a proper
choice of number system can contribute to arithmetical speed. But the
over-all performance of a computer cannot be measured by its arith-
metical speed alone; it is significantly affected by the ease with which
nonarithmetical operations are performed. Equally important is the
human factor. Unless the computer is programmed to assist in the
preparation of a problem and in the presentation of results, false starts
and waiting time can greatly dilute the effective performance of a high-
speed computer. Regardless of the number system chosen for internal
arithmetic, decimal numbers must be used in communicating between
man and the computer.

Civilized man settled on 10 as the preferred number base for his own
arithmetic a long time ago.! The ten digits of the decimal system had
their origin when man learned to count on his ten fingers. The word
digit is derived from the Latin word digitus for finger and remains to
testify to the history of decimal numbers. Historically, several other
number bases have been employed by various peoples at different times.
The smaller number bases are clearly more awkward for human beings

Note: The material in Chap. 5 is taken from W. Buchholz, Fingers or Fists? (The
Choice of Decimal or Binary Representation), Communs. ACM, vol. 2, no. 12, pp. 3-
11, December, 1959.

! Although in most languages numbers are expressed by decimal symbols, it is a
curious fact that there has been so far no standardization on multiples of 10 for units
of money, length, weight, and time. We are still content to do much of our everyday
arithmetic in what is really a mixed-radix system which includes such number bases
as 3, 4,7, 12, 24, 32, 60, 144, 1,760, etc.

42

Sec. 5.1] INTRODUCTION 43

to use because more symbols are needed to express a given number.
Nevertheless, there is evidence of the use of the base 2, presumably by
men who observed that they had two ears, eyes, feet, or fists.

With the decimal symbolism in universal use, it was natural that
the earliest automatic digital computers, like the desk calculators and
punched-card equipment that preceded them, should have been decimal.
In 1946 John von Neumann and his colleagues at the Institute for
Advanced Study, in their classical report describing the new concept of
a stored-program computer, proposed to depart from that practice.!
They chose the base 2 for their system of arithmetic because of its greater
economy, simplicity, and speed.

Many designers have followed this lead and built binary computers
patterned after the machine then proposed. Others have disagreed and
pointed out techniques for obtaining satisfactory speeds with decimal
arithmetic without unduly increasing the over-all cost of the computer.
Since decimal numbers are easier to use, the conclusion has been drawn
that decimal computers are easier to use. There have been two schools
of thought ever since, each supported by the fact that both decimal and
binary computers have been eminently suceessful.

As the Institute for Advanced Study report has long been out of print,
it seems appropriate to quote at some length the reasons then given for
choosing binary arithmetic:

In spite of the longstanding tradition of building digital machines in the
decimal system, we feel strongly in favor of the binary system for our device.
Our fundamental unit of memory is naturally adapted to the binary system
since we do not attempt to measure gradations of charge at a particular point in
the Selectron [the memory device then proposed] but are content to distinguish
two states. The flip-flop again is truly a binary device. On magnetic wires or
tapes and in acoustic delay line memories one is also content to recognize the
presence or absence of a pulse or (if a earrier frequency is used) of a pulse train,
or of the sign of a pulse. (We will not discuss here the ternary possibilities of a
positive-or-negative-or-no pulse system and their relationship to questions of
reliability and checking, nor the very interesting possibilities of carrier frequency
modulation.) Hence if one contemplates using a decimal system . . . one is
forced into a binary coding of the decimal system—each decimal digit being
represented by at least a tetrad of binary digits. Thus an accuracy of ten deci-
mal digits requires at least 40 binary digits. In a true binary representation of
numbers, however, about 33 digits suffice to achieve a precision of 101, The
use of the binary system is therefore somewhat more economical of equipment
than is the decimal.

A, W. Burks, H. H. Goldstine, and J. von Neuinann, “Preliminary Discussion of
the Logical Design of an Eleetronic Computing Instrument,” Institute for Advanced
~tudy, Princeton, N.J., 1st ed. June, 1946, 2d ed., 1947, sec. 5.2; also subsequent
reports by H. H. Goldstine and J. von Neumann.

44 CHoosING A NUMBER BASE [Cuap. 5

The main virtue of the binary system as against the decimal is, however, the
greater simplicity and speed with which the elementary operations can be per-
formed. To illustrate, consider multiplication by repeated addition. In binary
multiplication the product of a particular digit of the multiplier by the multi-
plicand is either the multiplicand or null according as the multiplier digit is 1 or 0.
In the decimal system, however, this product has ten possible values between
null and nine times the multiplicand, inclusive. Of course, a decimal number has
only logi; 2 = 0.3 times as many digits as a binary number of the same accuracy,
but even so multiplication in the decimal system is considerably longer than in
the binary system. One can accelerate decimal multiplication by complicating
the circuits, but this fact is irrelevant to the point just made since binary multi-
plication can likewise be accelerated by adding to the equipment. Similar
remarks may be made about the other operations.

An additional point that deserves emphasis is this: An important part of the
machine is not arithmetical but logical in nature. Now logic, being a yes-no
system, is fundamentally binary. Therefore a binary arrangement of the
arithmetical organs contributes very significantly towards producing a more
homogeneous machine, which can be better integrated and is more efficient.

The one disadvantage of the binary system from the human point of view is
the conversion problem. Since, however, it is completely known how to convert
numbers from one base to another and since this conversion can be effected solelyv
by the use of the usual arithmetic processes, there is no reason why the computer
itself cannot carry out this conversion. It might be argued that this is a time-
consuming operation. This, however, is not the case. . . . Indeed a general-
purpose computer, used as a scientific research tool, is called upon to do a very
great number of multiplications upon a relatively small amount of input data,
and hence the time consumed in the decimal-to-binary conversion is only a trivial
per cent of the total computing time. A similar remark is applicable to the
output data.

The computer field and, along with it, the technical literature on com-
puters have grown tremendously since this pioneering report appeared.
It seems desirable, therefore, to bring these early comments up to date
in the light of experience. The present discussion is also intended to
widen the scope of the examination so as to reflect knowledge gained from
increasing areas of application of the large computers. Mathematical
computations are still important, but the processing of large files of busi-
ness data has since become a major field. Computers are beginning to
be applied to the control of planes in actual flight, to the collection and
display of data on demand, and to language translation and systems
simulation. Regardless of the application, a great deal of the time of
any large computer is spent on preparing programs before they can be
fun on that computer. Much of this work is nonnumerical data process-
ing. The point of view has thus shifted considerably since the days of
the von Neumann report, and a reevaluation seems to be in order.

SEc. 5.2] INForMaTION CONTENT 45

5.2. Information Content

Information theory'.? allows us to measure the information content of
a number in a specific sense. Assume a set of N possible numbers, each
of which is equally likely to occur during a computing process. The
information H contained in the selection of a number is then

H =log, N

Suppose, now, that a set of b binary digits (bits) represents a set of 2 con-
secutive integers, extending from 0 to 2> — 1, each of these integers being
equally probable. Then

H

log, 2*
= b bits

(Because in this example the amount of information is equal to the num-
ber of bits needed to represent the integer in binary form, the bit is often
chosen as the unit of information. The two uses of the term bit should
not be confused, however. Numbers are defined independently of their
representation, and the information content of a number is measured in
bits regardless of whether the number is in binary, decimal, or any other
form.)

Similarly, assume a set of 107 consecutive integers from 0 to 107 — 1
expressed by d decimal digits. Here

H = log, 104
d

3.322d bits (approx.)

Thus a decimal digit is approximately equivalent in information content
to 3.322 binary digits.

In the actual representation of a number ¥, both b and d must, of
course, be integers. The ranges 107 and 2* cannot be compared exactly.
I'or such pairs as d = 3 and b = 10, the values 103 = 1,000 and
210 = 1,024 come very close to being equal. Here b/d = 195 = 3.333
{approx.), which agrees well with the above value 3.322. This shows,
at least, that the measure of information is a plausible one.

Conversely, to express a binary number requires approximately 3.322
times as many binary symbols (0 and 1) as decimal symbols (0 to 9).

1 C. E. Shannon and W. Weaver, “The Mathematical Theory of Communication,”
The University of Illinois Press, Urbana, Ill., 1949.

2 [,. Brillouin, “Science and Information Theory,” Academic Press, Inc., New York,
1956, pp. 3-4.

46 CHOOSING & NUMBER Base [CHaP. 5

Few truly decimal switching and storage devices have found application
in high-speed electronic computers; otherwise a decimal computer might
be a great deal more compact than a corresponding binary computer.
Generally, only binary (or on-off) devices are used; hence decimal digits
must be encoded in binary form even in decimal computers.! Since bits
cannot be split to make up the 3.322 bits theoretically required, at least
4 bits are needed to represent a decimal digit. Therefore, instead
of being more compact, a decimal computer in fact requires at least
4/3.322 = 1.204 times as many storage and switching elements in a large
portion of its system. The reciprocal ratio, 3.322/4 or 83 per cent, might
be considered to be the maximum storage efficiency of a decimal computer.

Four-bit coding of decimal digits is called binary-coded decimal (BCD)
notation. Codes with more than 4 bits for each decimal digit are often
used to take advantage of certain self-checking and other properties; the
efficiency of such codes is correspondingly lower than 83 per cent.

The 83 per cent efficiency is only a theoretical value for even a 4-bit
code. A basic assumption made in arriving at this value was that all the
N possible numbers in the expression logs N were equally likely to occur.
Nonuniform distributions are quite frequent, however. A common situ-
ation is that a set of b bits (in the binary case) is chosen to represent
N integers from 0 to N — 1, N < 2% and the integers N to 2® — 1 are
never encountered. The information content logs N may then be con-
siderably less than b bits. Both binary and decimal computers suffer a
loss of efficiency when the number range N is not a power of the number
base.

For example, assume N = 150; that is, the numbers range from 0 to
149. Then

H = log, 150 = 7.23 bits

Since 8 is the next largest integer, a binary computer requires at least
8 bits to represent these numbers, giving an efficiency of 7.23/8 or 90 per

' The universal use of binary elements is based on practical engineering consider-
ations, but under certain crude assumptions it can be shown that 2 js also a near-
optimum radix theoretically. Let a given number N be represented in radix » by »
radix positions; that is, N = »*. Assume the cost of each radix position to be
proportional to the radix, so that the cost C of representing N is

C = krn = kr }l()g, N
og.

Assume further that r and » could be continuously variable; then setting dC/dr = 0
gives & minimum cost for » = e. The nearest integral radixes are 2 and 3, and their
value of C is not much greater than the minimum. Although ternary arithmetic is
an interesting possibility, there has been little incentive to develop ternary devices
in practice,

Sec. 5.2] InrForMaTION CONTENT 47

cent. A decimal computer requires at least three decimal digits or
12 bits, with an efficiency of 7.23/12 or 60 per cent. Relative to the
binary number base, the efficiency of decimal representation is only
60/90 or 67 per cent.

The loss in efliciency is greatest for the smaller integers. With binary
integers the lowest efficiency of 78 per cent occurs for N = 5. Decimal
representation has its lowest efficiency of 25 per cent at N = 2. Decimal
representation is never more efficient than binary representation, and
only for N = 9 and N = 10 are they equally efficient.

Figure 5.1 shows the storage efficiency curves for binary and decimal
systems, and Fig. 5.2 shows the cfficiency of the decimal representation
relative to the binary system.

Binary

100 "

QfF— ¥ — A e A T oA T T T =

20k /
Decimal

60

VO
o/

20

E, per cent

10t

0 a0 b P T L1 Ly FE S AR N Lo b
1 10 100 1,000 10,000 100,000
N

Fic. 5.1. Absolute efficiency of decimal and binary number systems. K = (log, N)/b,
where b 1s the least number of bits to represent N.

For the above analysis a variable-field-length operation was assumed
where the least possible number of bits or decimal digits can be assigned
to represent the maximum value of N. A great many computers are
designed around a fixed word length, and even more space will then be
wasted unless time is taken to program closer packing of data. It was
also assumed that the N integers considered were distributed uniformly
throughout the interval; a nonuniform distribution with numbers miss-
:ng throughout the interval results in a further lowering of storage
efficiency, which affects binary and decimal computers alike.

Although only integers have been considered so far, the same reasoning
sbviously applies to fractions truncated to a given precision, since these
are treated in storage in thc same manner as integers. Similarly, the
~ign of & number may be regarded as an integer with N = 2. Instruc-

48 (CHoosING A NUMBER BaSk [CuaP. 5

tions are always made up of a number of short, independent pieces. For
example, an operation code for 45 different operations may be encoded
as a set of integers with N = 45, for which the binary efficiency is 92 per
cent and the decimal efficiency only 69 per cent.

The lower information-handling efficiency of the decimal representa-
tion may reflect itself in higher cost, in lower performance, or both. If
performance is to be maintained, the cost will go up, but it would be
wrong to assume that the extra bits required for decimal representation
mean a proportional increase in cost. The ratio of the cost of storage,
registers, and associated switching circuits to the total cost of a com-

100
90 - [E,=83% for Ne»oo
g ==~ —— =t — I -

S P Pl Sl e
zz:*/r’ .

E,, per cent

20—

10+

0 TSNS B VW R E R N S I Y RN NN IS U NEET) b aoa b

1 10 100 1,000 10,000 100,000

N

Fra. 5.2. Relative efficiency of decimal and binary number systems. E, = by/by,,
where b; (b19) is the least number of bits in the binary (decimal) representation of N.

puter depends greatly on the design. Factors other than hardware cost
need to be considered in estimating the over-all cost of using a computer
on a given job.

When the cost is 1o be the same, a lower storage efficiency may result
in lower performance. Thus the performance of many storage devices,
such as magnetic tape, is limited by the bit transmission rate, so that
the greater storage space occupied by decimal numbers, as compared to
equivalent binary numbers, is reflected in a corresponding loss of speed.
This may be important for applications in which the transmission rate to
and from tape, or other external storage, is the limiting time factor: a
binary computer is clearly at least 20 per cent faster than a correspond-
ing decimal computer on a tape-limited job of processing numerical data.

Similarly, in many other applications the rate of information (data and
instruction) flow out of and into the internal memory will be a major
limiting faector, particularly for a computer designed to achieve the high-
est praeticable performance with given types of components. Although

SEc. 5.3] ARITHMETICAL SPEED 49

it can be very misleading to compare two dissimilar computers on the
basis of memory speed only, the comparison is appropriate for two com-
puters using similar components and organization but differing mainly in
their number representation.
A memory in active use may be looked on as an information channel
with a capacity of
C = nw bits per second

where n is the number of bits in the memory word and w is the maximum
number of words per second that the memory can handle.

This channel capacity is fully utilized only if the words represent num-
bers from 0 to 2= — 1, each of which is equally probable. If the infor-
mation content is less than that, the actual performance is limited to Hw,
where H is defined as before. More specifically, if a memory word is
divided into k fields, of range Ny, No, N3, . . . , Ny, then

H = i logs N;

i=1
The maximum performance is lowered by the factor

i _ Zlog, N,

(,' n

Fork = 1, thisis the same factor as the storage efficiency described above.

Other organizational factors may reduce performance further, and
memory multiplexing can be used to increase over-all performance.
These matters are independent of the number representation. The fact
remains that a decimal organization implies a decided lowering of the
maximum performance available. By Increasing the number of com-
ponents this loss can be overcome only in part, because of physical and
cost limitations.

In summary, to approach the highest theoretical performance inherent
in a given complement of components of a given type, it is necessary to
make each bit do 1 bit’s worth of work.

5.3. Avrithmetical Speed

A binary arithmetic unit is inherently faster than a decimal unit of
similar hardware complexity operating on numbers of equivalent length.
Whereas the gain in speed of binary over decimal arithmetic may not be
significant in relatively simple computers, it is substantial when the
design is aimed at maximum speed with a given set of components.
There are several reasons why binary arithmetic is faster.

1. The cumulative delay in successive switching stages of an adder
places a limit on the attainable speed, and the more complex decimal

50 CHoosING A NUMBER Bask [CHaP. 5

adder requires more levels of switching than a binary adder for numbers
of similar precision. Carry propagation, if any, also takes longer in a
decimal adder because decimal numbers are longer.

2. With a base of 2, certain measures can be taken to speed up multi-
plication and division. An example is the skipping of successive Os or 1s
in the multiplier. When corresponding measures are taken with base 10
arithmetie, they are found to give a smaller ratio of improvement. Thus
the average number of additions or subtractions needed during multi-
plication or division is greater, and this difference is compounded by the
extra time needed for each addition or subtraction.

3. Sealing of numbers, which is required to keep numbers within the
bounds of the registers during computation, results in a greater round-off
error when the base is 10. The finest step of adjustment is 3.3 times as
coarse in shifting by powers of 10 as it is with powers of 2. In large
problems the greater error will require more frequent use of multiple-
precision arithmetie, at a substantial loss of speed. This effect is partly
offset by the fact that scaling will ocenr more often in binary arithmetie,
and the extra shifting takes more time.

4. Multiplying or dividing by powers of the number base is accom-
plished by the fast process of shifting. The coefficients 2 and 14 are
found much more frequently in mathematical formulas than other coeffi-
cients, including 10 and }{,, and a binary computer has the advantage
here.

To overcome the lower speed inherent in decimal arithmetic, it is, of
course, possible to construct a more complex arithmetic unit at a greater
cost in components. If top speed is desired, however, the designer of a
binary arithmetic unit will have taken similar steps. There is a decided
limit on this acceleration process. Not only does the bag of tricks run
low after a while, but complexity eventually becomes self-defeating.
Greater complexity means greater bulk, longer wires to connect the com-
ponents, and more components to drive the longer wires. The longer
wires and additional drivers both mean more delays in transmitting sig-
nals, which cannot be overcome by adding even more components.
When the limit is reached there remains the substantial speed differ-
ential between binary and decimal arithmetie, as predieted by theoretical
considerations in Sec. 5.1.

5.4. Numerical Data

Numerical data entering or leaving a computer system are of two kinds:
(1) those which must be interpreted by humans and (2) those which come
from or actuate other machines. The first are naturally in decimal form.
The second class, which oceurs when a computer is part of an automatic
control system, could also be decimal, since machines, unlike human

SEc. 5.5] NONNUMERICAL DaTa 51

beings, can readily be designed either way; but binary coding is generally
simpler and more efficient.

The previously cited von Neumann report considered only the impor-
tant applications where the volume of incoming and outgoing data is
small ecompared with the volume of intermediate results produced dur-
ing & computation. In a fast computer any conversion of input and out-
put data may take a negligible time, whereas the format of intermediate
results has a major effect on the over-all speed. The von Neumann
report did not consider the equally important data-processing applica-
tions in which but few arithmetical steps are taken on large volumes of
input-output data. If these data are expressed in a form different from
that used in the arithmetic unit, the conversion time can be a major
burden. Any conversion time must be taken into account as reducing
the effective speed of the arithmetic unit.

The choice would appear simple if different computers could be applied
to different jobs, using decimal arithmetic when the data were predomi-
nantly decimal and binary arithmetic elsewhere. Experience has shown,
however, that a single large computer is often used on a great variety of
jobs that cannot be classified all one way or the other. Moreover, as
will be shown in subsequent sections, there are strong reasons for choos-
ing a binary addressing system even where the applications indicate the
use of decimal data arithmetic. Some kind of binary arithmetic unit
must then be provided anyway, if only to manipulate addresses.

A high-speed binary arithmetic unit is thus clearly desirable for all
applications. To handle decimal data, the designer may choose to pro-
vide a separate decimal arithmetic unit in the same computer, or he may
prefer to take advantage of the speed of his binary arithmetic unit by
adding special instructions to facilitate binary-decimal conversion.

The decimal arithmetic and conversion facilities must take into acecount
=0t only the different number base of decimal data but also the different
‘ormat. Binary numbers usually consist of a simple string of numerical
~its and a sign bit. Decimal numbers are frequently interspersed with
alphabetic data, and extra zone bits (sometimes a separate digit) are then
provided to distinguish decimal-digit codes from the codes for alphabetic
and other characters. Theseparate treatment of numerical and zone por-
tions of coded digits greatly adds to the difficulty of doing conversion by
ordinary arithmetical instructions. Hence the decimal arithmetic and
conversion instructions should be designed to process decimal data
directly in a suitable alphanumeric code.

5.5. Nonnumerical Data

A computer may have to process a large variety of nonnumerical
.nformation:

52 CHOOSING A NUMBER Base [CHaP. 5

1. Character codes representing alphabetic, numerical, or other sym-
bols for recording data in human-rcadable form

2. Codes used to perform specified fun«tions, such as terminating data
transmission

3. Yes-no data (“married,” “‘out of stock,” etc.)
Data for logical and decision operations
Instructions (other than numerical addresses)
Machine-status information, such as error indications
Status of switches and lights

NS ook

Because the storage and switching elenients normally used in com-
puters are binary in nature, all information, numerical or nounumerical,
is encoded in a hinary form. This binary coding has no direct relation
to the number base being used for arithmetic. The number base deter-
mines the rules of arithmetic, such as how carries are propagated in addi-
tion, but it has no meaning in dealing with nonnumerical information.
Thus the binary-decimal distinction does not apply directly to the non-
arithmetical parts of a computer, such as the input-output system.

Even where mathematical computation on numerical data is the major
job, a great deal of computer time is usually spent on nonnumerical oper-
ations in preparing programs and reports. It is important, therefore,
that the designer avoid constraints on the coding of input and output
data, such as are found in many existing decimal computers. Many of
these constraints are unnecessary and place extra burdens of data con-
version and editing at greater cost on peripheral equipment.

5.6. Addresses

Memory addresses are subject to counting and adding and are thus
proper numbers which can be expressed with any number base. Base 10
has the same advantage for addresses as for data: conversion is not
required, and actual addresses can be continuously displayed on a con-
sole in easily readable form.

The compactness of binary numbers is found particularly advantageous
in fitting addresses into the usually cramped instruction formats (see
Chap. 9). Tight instruction formats contribute to performance by reduc-
ing the number of accesses to memory during the execution of a program
as well as by making more memory space available for data. The low
efficiency of decimal coding for addresses has already led designers of
nominally decimal computers to introduce a certain amount of binary
coding into their instruction formats. Such a compromise leads to pro-
gramming complications, which can be avoided when the coding is purely
binary.

Although the compactness of the binary notation is important, the

SEe. 5.7) TRANSFORMATION 53

most significant advantage of binary addressing is probably the ease of
performing data transformation by address selection (table look-up).
This is discussed in the next section.

5.7. Transformation

A single data-processing operation may be regarded as transforming
one or more pieces of data into a result according to certain rules. The
most general way of specifying the rules of transformation is to use a
set of tables. The common transformations, such as addition, multi-
plication, and comparison, are mechanized inside the computer, and some
others, such as code conversion, are often built into peripheral equipment;
tables (sometimes called matrizes) may or may not be employed in the
mechanization. All transformations not built into the computer must be
programmed.

In a computer with a large rapid-access internal memory, the best
transformation procedure, and often the only practical one, is table
look-up. TFach piece of data to be transformed is converted to an address
which is used to select an entry in a table stored in memory. (This
method of table look-up is to be distinguished from fable searching, where
all entries are scanned sequentially until a matching entry is found.)
Table 5.1 serves to illustrate the process by a code-translation example.

Two methods of encoding the digits 0 to 9, both in current use, are
shown in Table 5.1. One is a 2-out-of-5 code which requires 5 bits for
every digit. Two and only two 1 bits are contained in each digit code,
with all other 5-bit combinations declared invalid. This property per-
mits checking for single errors and for common multiple errors. The
second code is a 4-bit representation using codes 0001 to 1001 for the
digits 1 to 9 and 1010 for the digit 0. Codes 0000 and 1011 to 1111
are not, used.

IFor translation from the 5-bit code to the 4-bit code, a table of 32 (2%)
entries is stored in successive memory locations. Each entry contains a
4-bit code. Where the 5-bit combination is a valid code, the correspond-
ing 4-bit code is shown. All invalid 5-bit combinations are indicated in
the example by an entry of 1111, which is not a valid 4-bit code.

The example in Table 5.1 consists in adding a given 5-bit code 100071
to the address of the first entry, the table base address. The sum is the
address in the table of the desired entry, which is seen to be 0111. If
the entry had been 1111, the incoming code would have been known to
contain an error.

The key to this transformation process is the conversion of data to
addresses. A system capable of receiving, transforming, and transmit-
ting any bit pattern can communicate readily with any other system,
including equipment and codes over which the designer has no control.

54 (CHOOSING A NUMBER BASE [CHaP. 5

The desire to accept any bit pattern as an address almost dictates binary
addressing. It is true that decimal addressing does not entirely preclude
transformation of arbitrary data by indirect methods, but such methods
are very wasteful of time or memory space.

TasLe 5.1. ExasmrLe or Cope TRANSLATION BY TRANSFORMATION

Two codes for decimal digils Translation table, code A to code B
Symbols Code A Code B Address Entry
(5 bits) (4 bits)

1 00011 0001 ...700000 1111
2 00101 0010 ...100001 1111
3 00110 0011 ...100010 1111
4 01001 0100 ...100011 0001
5 01010 0101 ...100100 1111
6 01100 0110 ...100101 0010
7 10001 0111
8 10010 1000 ...101110 1111
9 10100 1001 .. 101111 1111
0 11000 1010 ...110000 1111
... 110001 0111

...110010 1000

..110011 1111

111111 1111

Example: Translation of Symbol “T”’

...7100000 ‘able base address
+ 10001 Incoming 5-bit code
(Sum) ...110001 Address of table entry

5.8. Partitioning of Memory

It has already been mentioned that the binary radix makes it possible
to scale numbers in smaller steps and thus reduce loss of significance dur-
ing computation. Binary addresses also have this advantage of greater
resolution. Shifting binary addresses to the left or right makes it easy
to divide memory into different areas, or cells, whose sizes are adjustable
by powers of 2. With decimal addressing such partitioning is easily
obtained only by powers of 10.

In a core memory, for example, each address refers to a memory word
consisting of the number of parallel bits that are accessible in a single
memory cycle. Since binary addressing of these memory words had been
chosen for reasons given in previous sections, there was then considerable
advantage to choosing the number of bits in each word to be a power of 2.
In the 7030 this word length was set at 28, or 64 bits. (This particular

Sec. 5.8] ParTrrioNning or MEMORY 55

power of 2 gave a good compromise between speed and cost of memory
and provided ample space for representing a floating-point number in
one memory word. Thirty-two bits was too short and 128 bits too long.)
Individual bits in a 64-bit memory word can be addressed simply by
extending the address and inserting 6 bits to the right of the word address
to operate a bit-selection mechanism. When increments are added to
these addresses in binary form, whether by explicit instructions or by
indexing, carries from the sixth to the seventh bit automatically advance
the word address.

The flexibility of bit addressing may be illustrated by enlarging the
example of Table 5.1. Instead of using an entire memory word to hold
one 4-bit table entry, it is possible to use for the same entry a cell only
4 bits long, with sixteen cells in each memory word of 64 bits. With
respect to the bit address, the incoming code is shifted 2 bits to the left
to obtain increments of 4 bits of storage in memory:

...10000000 Table base address
+ 1000100 Incoming 5-bit code with two Os added

(Sum) ...11000100 Address of table entry
L —

Address Address of
of word bit in word

The example can be readily changed to translate from a 5-bit code to a
12-bit code, such as is used on punched cards. Without an actual table
being shown, it is evident that the 12-bit code can be conveniently stored
in successive 16-bit cells. The proper addresses are then obtained by
inserting four O bits at the right, instead of two as before:

...1000000000 Table base address
+ 100010000 Incoming 5-bit code with four Os added

(Sum) ...1100010000 Address of table entry
——

Address Address of
of word bit in word

Similarly, the process can be extended to finer divisions. By using the
incoming code as the address of a single bit, it is possible to look up a
compact table of yes-no bits in memory to indicate, for example, the
single fact of whether the code is valid or not.

Now consider these examples in terms of decimal addressing. If single
bits were to be addressed, the next higher address digits would address
every tenth bit. This is too large a cell size to permit the addressing of
every decimal digit in a data field. To be practical in large-scale numeri-
cal computation, the code for a decimal digit cannot occupy a cell of more
than 4, 5, or at most 6 bits. When the addressing is chosen to operate on

56 CHOOSING A NUMBER BASE [CHaAP. 5

cells of this size, direct addressing of single bits is ruled out. Table entries
requiring more than one cell cannot occupy less than ten cells.

The designer of a binary computer may or may not choose to endow 1t
with the powerful facility of addressing single bits (bit addressing) and
provide for automatic modification of bit addresses (bit indexing). The
point remains that the flexible partitioning of memory available to him
would not have been available with decimal addressing.

5.9. Program Interpretation

A major task in any computer installation is the preparation and check-
out of programs. Printing a portion of a program at the point where an
error has been found is a common check-out tool for the programmer.
Interpreting such a print-out is greatly simplified if the instructions are
printed in the language that the programmer used.

At first glance this seems to be a convincing argument for decimal
computers. On closer examination it becomes evident that both binary
and decimal machines would be difficult to use without the assistance of
adequate service programs. When good service programs are available
to assist the user, it is hard to see how the number base in the arithmetic
unit makes much difference during program check-out.

One reason for service programs is that in practice much programming
is done in symbolic notation, regardless of the number base used inter-
nally. The programmer’s language is then neither binary nor decimal;
1t is a set of alphanumeric mnemonic symbols. Conversion to or from
the symbolic notation by means of a service program is desirable for any
user of either kind of machine, with the possible exception of the pro-
gramming specialist who writes programs in machine language either by
choice or in order to develop new service programs.

Another and more basic reason for service programs is that most com-
puters have more than one format for data and instructions, and a service
program is needed to help interpret these formats. In binary computers
it is desirable to know whether a data field is an integer or a floating-point
number with its separate exponent (integer) and fraction. The instruc-
tions are normally divided differently from either kind of data field. A
knowledge of the divisions of each format is required in converting from
binary to decimal form.

Many decimal computers do not use purely decimal coding for the
instructions, particularly those aimed at efficient processing of large
amounts of nonnumerical business data. Moreover, alphanumeric char-
acter coding usually employs a convention different from that used in the
coding of instructions. Again, a service program is needed to interpret
the different data and instruction languages.

Table 5.2 illustrates this point with print-outs of actual computer pro-

Sec. 5.9] ProGRAM INTERPRETATION 57

grams. The first example is for an IBM 704, which uses binary arith-
metic. The service program lists memory locations and instructions in
octal form with the appropriate instruction bits also interpreted as alpha-
betic operation codes. The service program distinguishes floating-point
numbers, which are listed in a decimal format with separate exponent,
mantissa, and signs.

TaBLE 5.2. ExampLEs oF PrROGRAM PRINT-OUTS

Print-out from IBM 704

Location Instruction or data
00622 FSB 030200 0 00637
00623 TZE 0 10000 0 00626
00624 TPL 0 12000 0 00607
00625 S TO 0 60100 0 00634
00626 HTR 0 00000 0 00561
00627 — 01 + 9 945 2245
00630 +03 4+ 4.130 0000
00631 -01 4+ 7.330 4100
00632 +05 4+ 5.301 7842

Print-out from IBM 7056

Straight Print-out modified
Location print-oul for instructions
012014 8 T L — 1 8 13301 10
01209 4 / QR 1 4 11891 10
01214 L1 09 4 L 1094
01219 HW35 R 4 H 16594 02
01224 7 W6 N 5 7 16655 02
01229 1 2 4 4 9 1 2449
11304 I8 P A I 12 7A 14
11309 G E W A G 35 6A 13
11314 S PR O S 3 790 10
11319 CESSE C 3522E 05
11324 D THR D 3 38R 07
11329 OUGH 0O 1478 15

The second illustration shows a print-out from the IBM 705, a com-
puter with decimal arithmetic and with alphanumeric coding for data.
Each alphanumeric character has a unique 6-bit code. For reasons of
storage efficiency, instructions in the 705 use a different code where some
of the bits in a 6-bit character have independent meanings. In the exam-
ple shown in Table 5.2, this dual representation is overcome by printing
the program and data twice, once for ease of reading data and once for

58 CHOOSING A NUMBER Bask [Cuap. 5

ease of interpreting instructions. A service program was needed to
accomplish this.

The objection might be raised that the examples show up problems in
existing machine organizations rather than a need for service programs.
1t is actually possible for “numerical engines” aimed at processing only
numerical data to escape the problem of dual representation for instruc-
tions and data. When alphanumeric data must also be processed in a
reasonably efficient manner, however, one cannot avoid the problem of
dual representation.

5.10. Other Number Bases

Only binary and decimal computers have been considered here.
Although it is clear that other number bases could be selected, they
would all require translation to and from decimal formats, and they
would be no more efficient than base 2.

5.11. Conclusion

The binary number base has substantial advantages in performance
and versatility for addresses, for control data that are naturally in binary
form, and for numerical data that are subjected to a great deal of arith-
metical processing. Figures of merit are difficult to assign because the
performance and cost of a given computer design depend on a great
many factors other than the number base. It is clear, however, that
decimal representation has an inherent loss in performance of at least
20 to 40 per cent as compared with binary representation and that refined
design with increased cost can overcome this loss only in part. The
decrease in efficiency makes itself felt in a number of ways; so the com-
bined effect on over-all performance may be even greater than the per-
centage indicated.

1t is equally clear, however, that a computer that is to find application
in the processing of large files of information and in extensive man-
machine communication must be adept at handling data in human-
readable form; this form includes decimal numbers, alphabetic descrip-
tions, and punctuation marks. Since the volume of data may be great,
it is important that binary-decimal and other conversions should not
become a burden greatly reducing the effective speed of the computer.

Hence it was decided to combine in the design of the IBM 7030 the
advantages of binary and decimal number systems. Binary addressing
has been adopted for its greater flexibility; each bit in memory has a
separate address, and the length of a word in memory is a power of 2
(64 bits). Binary arithmetical operations are provided for manipulating
these addresses and for performing floating-point arithmetic at extremely
high speed. Efficient binary-decimal conversion instructions minimize

SEc. 5.11] CONCLUSION 569

the conversion time for input and output data intended for use in exten-
sive mathematical computation. Decimal arithmetic is also included in
the instruction repertoire, in order to permit simple arithmetical oper-
ations to be performed directly on data in binary-coded decimal form.
Such a combination of binary and decimal arithmetic in a single com-
puter provides a high-performance tool for many diverse applications.
It may be noted that a different conclusion might be reached for a com-
puter with a restricted range of functions or with performance goals
limited in the interest of economy; the difference between binary and
decimal operation might well be considered too small to justify incorpo-
rating both. This conclusion does appear valid for high-performance
computers, regardless of whether they are aimed primarily at scientific
computing, business data processing, or real-time control. To recom-
mend binary addressing for a computer intended for business data proc-
essing is admittedly a departure from earlier practice, but the need for
handling and storing large quantities of nonnumerical data makes the
features of binary addressing particularly attractive. In the past, the
real obstacle to binary computers in business applications has been the
difficulty of handling inhcrently decimal data. Binary addressing and
decimal data arithmetic, therefore, make a powerful combination.

Chapter 6
CHARACTER SET
by R. W. Bemer and W. Buchholz

6.1. Introduction

Among the input and output devices of a computer system, one can
distinguish between those having built-in codes and those largely insensi-
tive to code. Thus typewriters and printers necessarily have a fixed code
that represents printable symbols to be read by the human eye; a code
must be chosen for such a device in some more or less arbitrary fashion,
and the device must make the transformation between code and symbol.
Data storage and transmission devices, on the other hand, such as mag-
netic tape units and telephone transmission terminals, merely repeat the
coded data given to them without interpretation, except that some code
combinations may possibly be used to control the transmission process.
(Strictly speaking, storage and transmission devices do generally limit
the code structure in some respect, such as maximum byte size, so that
code sensitivity is a matter of degree.)

For the inherently code-sensitive devices to be attached to a new com-
puter system, an obvious choice of character set and code would have
been one of the many sets already established. When the existing sets
were reviewed, however, none were found to have enough of the system
characteristics considered desirable. In fact, it became clear that about
the only virtue of choosing an already established set is that the set
exists. Accordingly, it was decided, instead, to devise a new character
set expressly for use throughout a modern computer system, from input
to output. The chief characteristic of this set is its extension to many
more different characters than have been available in earlier sets. The
extended set designed for the 7030 (Fig. 6.1) contains codes for 120
different characters, but there is room for later expansion to up to 256
characters including control characters. In addition, useful subsets have
been defined, which contain some but not all of these 120 characters and
which use the same codes for the selected characters without translation.

60

Sec. 6.1] INTRODUCTION 61

It should be noted that the 7030 computer is relatively insensitive to
the specific choice of code, and any number of codes could be successfully
used in the system. For any particular application a specialized charac-
ter code might be found superior. In practice, however, a large computer

Bits 0-1-2-3
4587 | 0000 | 0001 | 0010 | aot1 | o100 | o101 | ar10 | o111
0000 |Blank | [& c|l k] s]0]S8
oot { T 2]+ | C|K|ST o] g
wo | = |] $ | dl 1] ¢t 9
ot f 2] 2| = D}JL]TY|,]9
o0 | A | - clefmtul?2 .
0101 {1 = (fE{M|IUT > :
0110 t{ -/ | Ff{niv{3]-
0111 YLV FINJ VY 5|2
1000 v [% s glol|w L
00t | YN 3 | GO W],
1010 } 0 ! h o) X 5
1011 i | "ITH] P} X | 5
mo | > # | al|i|lal|ly]| 6
1101 2 ! AlI | QI[IY | e
1110 <| 3 b 3 r z 7
1111 |~ BJJ|R|Z]

FiG. 6.1. 120-character set,

installation must deal with a mixture of widely different applications, and
the designers have to choose a single character set as a compromise among
conflicting requirements,

The purpose of this chapter is to list major requirements of a character
set and code, and to point out how these requirements may or may not
be met by the specific set to be described.

62 CHARACTER SET [CuaPr. 6

6.2. Size of Set

Present IBM 48-character sets consist of

1. 10 decimal digits

2. 26 capital letters

3. 11 special characters
4. 1 blank

Other manufacturers have employed character sets of similar or some-
what larger size.

Because a single set of eleven special characters is not sufficient, there
exist several choices of special characters as “standard options.”

Since this 48-character set is often represented by a 6-bit code, it is
natural to try to extend it to 63 characters and a blank, so as to exploit
the full capacity of a 6-bit code.! Although the extra sixteen characters
would indeed be very useful, this step was thought not to be far-reaching
enough to justify development of the new equipment that it would
require.

As a minimum, a new set should include also:

5. 26 lower-case letters

6. The more important punctuation symbols found on all office
typewriters

7. Enough mathematical and logical symbols to satisfy the needs of
such programming languages as ALGOL?*?

There is, of course, no definite upper limit on the number of characters.
One could go to the Greek alphabet, various type fonts and sizes, etc.,
and reach numbers well into the thousands. As set size increases, how-
ever, cost and complexity of equipment go up and speed of printing goes
down. The actual choice of 120 characters was a matter of judgment;
it was decided that this inecrement over existing sets would be sufficiently
large to justify a departure from present codes and would not include
many characters of only marginal value.

6.3. Subsets

Two subsets of 89 and 49 characters were chosen for specific purposes.
The 89-character set (Fig. 6.2) is aimed at typewriters, which, with 44

' H. 8. Bright, Letter to the Editor, Communs. ACM, vol. 2, no. 5, pp. 6-9, May,
1959 (a 64-character alphabet proposal).

2 A. J. Perlis and K. Samelson, Preliminary Report: International Algebraic Lan-
guage, Communs. ACM, vol. 1, no. 12, December, 1958.

3 Peter Naur (editor), Report on the Algorithmie Language ALGOL 60, Communs.
ACM, vol. 3, no. 5, May, 1960.

SEc. 6.5] CopE 63

character keys, a case shift, and a space bar, can readily handle 89
characters. This subset was considered important because input-output
typewriters can already print 89 characters without modification, and
44-key keyboards are familiar to many people.

The 49-character subset (Fig. 6.3) is the conventional set of ‘“com-
mercial”’ characters in a code compatible with the full set.! This subset
is aimed at the chain printer mechanism used with the 7030, which can
readily print character sets of different sizes but prints the larger sets at
a reduced speed. The 49-character subset permits high-volume printing
at high speed in a compatible code on jobs (such as bill printing) where
the extra characters of the full set may not be needed. It should be noted
that the 49-character set is not entirely a subset of the 89-character set.

Other subsets are easily derived and may prove useful. For example,
for purely numerical work, one may wish to construct a 13-character set
consisting of the ten digits and the symbols . (point) and — (minus),
together with a special blank.

6.4. Expansion of Set

Future expansion to a set larger than 120 can take place In two ways.

One is to assign additional characters to presently unassigned codes;
allowance should then be made for certain control codes which will be
needed for communication and other devices and which are intended to
occupy the high end of the code sequence.

The second way is to define a shift character for “escape” to another
character set.2 Thus, whenever the shift character is encountered, the
next character (or group of characters) identifies a new character set, and
subsequent codes are interpreted as belonging to that set. Another shift
character in that set can be used to shift to a third set, which may again
be the first set or a different set. Such additional sets would be defined
only if and when there arose applications requiring them.

6.5. Code

In choosing a code structure, many alternatives were considered.
These varied in the basic number of bits used (i.e., the byte size) and in
the number of such bytes that might be used to represent a single (print-

! Note that this is one character larger than the previously referred-to 48-character
set. The additional special character was introduced in 1959 on the printer of the
IBM 1401 system; but its use has not become firmly established, partly because it
has no counterpart on the keypunch. Thus the 48- and 49-character sets are, in
effect, the same set.

*R. W. Bemer, A Proposal for Character Code Compatibility, Communs. ACM,
vol. 3, no. 2, February, 1960,

64 CHARACTER SET (Cuap. 6
Bits 0-1-2:3

4-E5ﬁ-165-7 0000 | 0001 | 0010 | 0011 | 0100 { 0101 | o110 | 0111
0000 | Blank Elc |k |s | 0]8
0007 + | C| KIS0l as
0010 $ d 1 t 1 9
0011 = D L T 1 9
0100 ¥ e m u 2 .
0101 (Ef{M]| UL 5 :
0110 / f n \Y 3 -
o111) F N v 3 2
1000 s 1 g]of{wlhl
1001 H G 0] W L
1010 "Ihlp x5
1011 "TH]IPL] X 5
1100 a Tlaly| 6
1101 Al I|Q}f Y] 6
1110 b] r{z |7
1111 B | J R | Z 7

able) character.

Fi1c. 6.2. 89-character set.

Among the alternatives were the following:

Single 6-bit byte with shift codes interspersed
single 12-bit byte!

Double 6-bit byte

Single 8-bit byte
Single 12-bit byte for “‘standard” characters (punched-card code) and
two 12-bit bytes for other characters

Some of these codes represented attempts to retain partial compati-
bility with earlier codes so as to take advantage of existing equipment.

'R. W. Bemer, A Proposal for a Generalized Card Code for 256 Characters, Com-
muns. ACM, vol. 2, no. 9, September, 1959.

SEc. 6.5] Copr

it Bits 0-1-2-3

4-5-6-7 | 0000 | coc1 | 0010 | 0011 | 0100 | 0101 | o110 | 0111
0000 | Blank & 0| 8
0001 C K S

0010 $ 1 9
0011 D L T

0100 ¥ 2 .
0101 E M U

0110 / 3| -
0111 F N v

1000 % s b

1007 G O W

1010 0 ! 5

1017 H P X

1100 # 6

1101 A I Q Y

1110) 7

1111 B J R Z

Fic. 6.3. 49-character set.

65

These attempts were abandoned, in spite of some rather ingenious pro-
posals, because the advantages of partial compatibility were not enough

10 offset the disadvantages.

The 8-bit byte was chosen for the following reasons:

1. Its full capacity of 256 characters was considered to be sufficient
for the great majority of applications.
2. Within the limits of this capacity, a single character is represented
by a single byte, so that the length of any particular record is not depend-
ent on the coincidence of characters in that record.
3. 8-bit bytes are reasonably economical of storage space.

66 CHARACTER SET [Crar. 6

4. For purely numerical work, a decimal digit can be represented by
only 4 bits, and two such 4-bit bytes can be packed in an 8-bit byte.
Although such packing of numerical data is not essential, it is a common
practice in order to increase speed and storage efficiency. Strictly speak-
ing, 4-bit bytes belong to a different code, but the simplicity of the 4-and-
8-bit scheme, as compared with a combination 4-and-6-bit scheme, for
example, leads to simpler machine design and cleaner addressing logic.

5. Byte sizes of 4 and 8 bits, being powers of 2, permit the computer
designer to take advantage of powerful features of binary addressing and
indexing to the bit level (see Chaps. 4 and 5).

The eight bits of the code are here numbered for identification from
left to right as 0 (high-order bit) to 7 (low-order bit). “Bit 0" may be
abbreviated to Ba, “bit 1"’ to Bj, ete.

6.6. Parity Bit

For transmitting data, a ninth bit is attached to each byte for parity
checking, and it is chosen so as to provide an odd number of 1 bits.
Assuming a 1 bit to correspond to the presence of a signal and assuming
also an independent source of timing signals, odd parity permits all 256
combinations of 8 bits to be transmitted and to be positively distinguished
from the absence of information. The paritv bit is identified here as
“bit, P’ or Bp.

The purpose of defining a parity bit in conjunction with a character set
is to establish a standard for communicating between devices and media
using this set. It is not intended to exclude the possibilities of error
correction or other checking techniques within a given device or on a
given medium when appropriate.

6.7. Sequence

High-equal-low comparisons are an important aspect of data process-
ing. Thus, in addition to defining a standard code for each character,
one must also define a standard comparing (collaling) sequence. Obvi-
ously, the decimal digits must be sequenced from 0 to 9 in ascending
order, and the alphabet from A to Z. Rather more arbitrary is the
relationship between groups of characters, but the most prevalent con-
vention for the 48 IBM ‘“‘commercial” characters is, in order:

(Low) Blank
Special characters . J{ & $* — /, % # @
Alphabetic characters A to Z

{High) Decimal digits 0to 9

Fundamentally, the comparing sequence of characters should conform
to the natural sequence of the binary integers formed by the bits of that

Skc. 6.8] BrLAaNK 67

code. Thus 0000 0100 should follow 0000 0011. Few existing codes
have this property, and it is then necessary, in effect, to translate to a
special internal code during alphanumeric comparisons. This takes extra
equipment, extra time, or both. An important objective of the new char-
acter set was to obtain directly from the code, without translation, a
usable comparing sequence.

A second objective was to preserve the existing convention for the
above 48 characters within the new code. This objective has not been
achieved because of conflicts with other objectives.

The 7030 set provides the following comparing sequence without any
translation:

(Low) Blank
Special characters (see chart)
Alphabetic characters a AbBeCtozZ
Numerical digits 0,1, t09,
Special characters . : — ?
(High) Unassigned character codes

Note that the lower- and upper-case letters occur in pairs in adjacent
positions, following the convention established for directories of names.
(There appeared to be no real precedent for the relative position within
the pair. The case shift is generally ignored in the sequence of names
in telephone directories, even when the same name is spelled with either
upper- or lower-case letters. This convention is not usable in general,
=ince each character code must be considered unique.)

The difference between this comparing sequence and the earlier con-
vention lies only in the special characters. Two of the previously avail-
able characters had to be placed at the high end, and the remaining special
characters do not fall in quite the same sequence with respect to one
another. Tt was felt that the new sequence would be quite usable and
that it would be necessary only rarely to re-sort a file in the transition
10 the 7030 code. It is always possible to translate codes to obtain any
other sequence, as one must do with most existing codes.

6.8. Blank

The code 0000 0000 is a natural assignment for the blank (i.e., the
nonprint symbol that represents an empty character space). Not only
should the blank compare lower than any printable character, but also
absence of bits (other than the parity bit) corresponds to absence of
mechanical movement in a print mechanism.

Blank differs, however, from a null character, such as the all-ones code
jound on paper tape. Blank exists as a definite character occupying a
definite position on a printed line, in a record, or in a field to be compared.

68 CHARACTER SET [Cnap. 6

A null may be used to delete an erroneous character, and it would be
completely dropped from a record at the earliest opportunity. Null,
therefore, occupies no definite position in a comparing sequence. A null
has not been defined here, but it could be placed when needed among the
control characters.

Considering numerical work only, it would be aesthetically pleasing to
assign the all-zeros code to the digit zero, that is, to use 0000 as the
common zone bits of the numeric digits (see below). In alphanumeric
work, however, the comparing sequence for blank should take preference
in the assignment of codes.

6.9. Decimal Digits

The most compact coding for decimal digits is a 4-bit code, and the
natural choices for encoding 0 to 9 are the binary integers 0000 to 1001.
As mentioned before, two such digits can be packed into an 8-bit byte;
for example, the digits 28 in packed form could appear as

0010 1000

If decimal digits are to be represented unambiguously in conjunction
with other characters, they must have a unique 8-bit representation.
The obvious choice is to spread pairs of 4-bit bytes iuto separate 8-bit
bytes and to insert a 4-bit prefix, or zone. For example, the digits 28
might be encoded as

zzzz. 0010 zzzz. 1000

where the actual value of each zone bit z is immaterial so long as the
prefix is the same for all digits.

This requirement conflicted with requirements for the comparing
sequence and for the case shift. As a result, the 4-bit byte is offset by
1 bit, and the actual code for 28 is

0110 0100 0111 0000

This compromise retains the binary integer codes 0000 to 10071 in
adjacent bit positions, but not in either of the two positions where they
appear in the packed format.

The upper-case counterparts of the normal decimal digits are assigned
to italicized decimal subscripts.

6.10. Typewriter Keyboard

The most commonly found devices for key-recording input to a com-
puter system are the IBM 24 and 26 keypunches, but their keyboards
are not designed for keying both upper- and lower-case alphabetic char-
acters. The shifted positions of some of the alphabetic characters are
used to punch numerical digits. For key-recording character sets with

Sec. 6.12] UNIQUENESS 69

much more than the basic 48 characters, it is necessary to adopl a key-
board convention different from that of the keypunch. The 89-character
subset was established to bring the most important characters of the full
set within the scope of the common typewriter, thus taking advantage of
the widespread familiarity with the typewriter keyboard and capitalizing
on existing touch-typing skills as much as possible.

The common typewriter keyboard consists of up to 44 keys and a sepa-
rate casc-shift key. To preserve this relationship in the code, the 44 keys
are represented by 6 bits of the code (B) to Bs) and the case shift by a
separate bit (B7). The case shift was assigned to the lowest-order bit,
so as to give the desired sequence between lower- and upper-case letters.

For ease of typing, the most commonly used characters should appear
in the lower shift (B; = 0). This includes the decimal digits and, when
both upper- and lower-case letters are used in ordinary text, the lower-
case letters. (This convention differs from the convention for single-case
typewriters presently used in many data-processing systems; when no
lower-case letters are available, the digits are naturally placed in the same
shift as the upper-case letters.) It isrecognized that the typewriter key-
board is not the most efficient alphanumeric keyboard possible, but it
would be unrealistic to expect a change in the foreseeable future. For
purely numerical data, it is always possible to use a 10-key keyboard
either instead of the typewriter keyboard or in addition to it.

It was not practical to retain the upper- and lower-case relationships
of punctuation and other special characters commonly found on type-
writer keyboards. There is no single convention anyway, and typists
are already accustomed to finding differences in this area.

6.11. Adjacency

The 52 characters of the upper- and lower-case alphabets occupy 52
consecutive code positions without gaps. Ior the reasons given above,
it was necessary to spread the ten decimal digits into every other one of
rwenty adjacent code positions, but the remaining ten positions are filled
with logically related decimal subscripts. The alphabet and digit blocks
are also contiguous. Empty positions for additional data and control
characters are all consolidated at the high end of the code chart.

This grouping of related characters into solid blocks of codes, without
empty slots that would sooner or later be filled with miscellaneous char-
acters, assists greatly in the analysis and classification of data for editing
purposes. Orderly expansion is provided for in advance.

6.12. Uniqueness

A basic principle underlying the choice of this set is to have only one
code for each character and only one character for each code.

70 CHARACTER SET [CHaP. 6

Much of the lack of standardization in existing character sets arises
from the need for more characters than there are code positions available
in the keying and printing equipment. Thus, in the existing 6-bit IBM
character codes, the code 007100 may stand for any one of the three
characters @ (at), — (minus), and ’ (apostrophe). The 7030 set was
required to contain all these characters with a unique code for each.

The opposite problem exists too. Thus, in one of the existing 6-bit
codes, — may be represented by either 700000 or 001100. Such an
embarrassment of riches presents a logical problem when the two codes
have in fact the same meaning and can be used interchangeably. No
amount of comparing and sorting will bring like items together until
one code is replaced by the other everywhere.

In going to a reasonably large set, it was necessary to resist a strong
temptation to duplicate some characters in different code positions so as
to provide equal facilities in various subsets. Instead, every character
has been chosen so as to be typographically distinguishable if it stands
by itself without context. Thus, for programming purposes, it is possi-
ble to represent any code to which a character has been assigned by its
unique graphic symbol, even when the bit grouping does not have the
ordinary meaning of that character (e.g., in operation codes).

In many instances, however, it is possible to find a substitute character
close enough to a desired character to represent it in a more restricted
subset or for other purposes. For example, = (equals) may stand for «
(is replaced by) in an 89-character subset. Or again, if a hyphen is
desired that compares lower than the alphabet, the symbol ~ (a modi-
fied tilde) is preferred to the more conventional — (minus).

A long-standing source of confusion has been the distinction between
upper-case ‘“oh” (O) and zero (0). Some groups have solved this problem
by writing zero as . Unfortunately, other groups have chosen to write
“oh” as (). Neither solution is typographically attractive. Instead, it is
proposed to modify the upper-case “oh” by a center dot (leaving the zero
without the dot) and to write and print “oh’” as © whenever a distinction
is desired.

Various typographic devices are used to distinguish letters (I, 1, V,
ete.) from other characters | | (stroke), 1 (one), V (or), ete.]. It is sug-
gested that the italicized subseripts be underlined when handwritten by
themselves, for example, 5

6.13. Signs

The principle of uniqueness implies a separate 8-bit byte to represent a
plus or a minus sign. Keying and printing equipment also require sepa-
rate sign characters. This practice is, of course, rather expensive in
storage space, but it was considered superior to the ambiguity of present

SEc. 6.15] CARD-PUNCHING CONVENTION Pl

6-bit codes where otherwise “unused” zone bits in numerical fields are
used to encode signs. If the objective is to save space, one may as well
abandon the alphanumeric code quite frankly and switch to a 4-bit
decimal coding with a 4-bit sign digit, or go to the even more compact
binary radix.

6.14. Tape-recording Convention

As has been remarked before, data-recording media such as magnetic
tape and punched cards are not inherently code-sensitive. It is obvi-
ously necessary, though, to adopt a fixed convention for recording a code
on a given medium if that medium is to be used for communication
between different systems.

Magnetic tape with eight, or a multiple of eight, information tracks
permits a direct assignment of the 8 bits in the 7030 code to specific
tracks. Magnetic tape with six information tracks requires some form
of byte conversion to adapt the 8-bit code to the 6-bit tape format. The
convention chosen is to distribute three successive 8-bit bytes over four
successive 6-bit bytes on tape. This convention uses the tape at full
efficiency, leaving no gaps except possib