THE
CONTROL DATA
6600
BASIC DESIGN CRITERIA

- INCREASE MEMORY SPEEDS & EFFICIENCY
- IMPROVE DATA THROUGH-PUT
- MINIMIZE INSTRUCTION FETCH DELAY
- ACHIEVE CONCURRENT INSTRUCTION EXECUTION
- USE STATE-OF-THE-ART TECHNOLOGY
CENTRAL MEMORY

CONTROL DATA 6600

131k or 65k
60 bit words
1μs cycle time
1 word/100 nanoseconds
transfer rate

Organized as:

- 32 banks each 4096 words
- Successive banks accessed every 100 nanoseconds
- Serial addressing guarantees successive bank references

<table>
<thead>
<tr>
<th>12 bits</th>
<th>5 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>word address</td>
<td>bank</td>
</tr>
</tbody>
</table>

XXX00
XXX01
XXX02
XXX03
XXX04
XXX05
XXX06
XXX07
XXX10

Nanoseconds

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
CENTRAL PROCESSOR

CONTROL DATA 6600

24 REGISTERS
- 8-X REGS
- 8-A REGS
- 8-B REGS

IO FUNCTIONAL UNITS

INSTRUCTION STACK
8 - 60 BIT WORDS

CENTRAL MEMORY
65K OR 131K

24 REGISTERS - 3 ADDRESS CENTRAL PROCESSOR
INSTRUCTION FORMATS

- **15 BIT INSTRUCTIONS**
 - OP CODE
 - RESULT REGISTER
 - 1ST OPERAND REGISTER
 - 2ND OPERAND REGISTER

 ![Diagram of 15 bit instructions]

- **30 BIT INSTRUCTIONS**
 - OP CODE
 - RESULT REGISTER
 - 1ST OPERAND REGISTER
 - 2ND OPERAND REGISTER

 ![Diagram of 30 bit instructions]

DATA FORMATS

- **FLOATING POINT FORMAT**
 - SIGN EXP COEFFICIENT
 - S 11 48

 ![Diagram of floating point format]

- **FIXED POINT FORMAT**
 - SIGN INTEGER
 - S 59

 ![Diagram of fixed point format]
PERIPHERAL PROCESSOR

4096 WORDS
12 BITS
1\mu s CYCLE TIME

<table>
<thead>
<tr>
<th>A</th>
<th>18 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>12 BITS</td>
</tr>
<tr>
<td>K</td>
<td>9 BITS</td>
</tr>
<tr>
<td>Q</td>
<td>12 BITS</td>
</tr>
</tbody>
</table>

64 INSTRUCTIONS
1\mu s MAJOR CYCLE

AVERAGE INSTRUCTION TIME = 2 MAJOR CYCLES

CONTROL DATA 6600

CENTRAL MEMORY
65K OR 131K
60 BITS

I/O CHANNELS

ONE OF TEN
INSTRUCTION FORMATS

- **12 BIT INSTRUCTIONS**

<table>
<thead>
<tr>
<th>OPERATION CODE</th>
<th>OPERAND OR OPERAND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

- **24 BIT INSTRUCTIONS**

<table>
<thead>
<tr>
<th>OPERATION CODE</th>
<th>OPERAND OR OPERAND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>p</td>
<td>p+1</td>
</tr>
</tbody>
</table>

DATA FORMAT

- **12 BIT DATA WORD**

 | 11 | 0 |
PERIPHERAL PROCESSOR CYCLE

CONTROL DATA 6600

M₀ M₁ M₂ M₃ M₄ M₅ M₆ M₇ M₈ M₉

CENTRAL MEMORY

READ PYRAMID

60 BITS

WRITE PYRAMID

12 BITS

I/O CONTROL
EXCHANGE JUMP PACKAGE

CONTROL DATA 6600

<table>
<thead>
<tr>
<th>LOC.</th>
<th>6</th>
<th>18</th>
<th>18</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>P</td>
<td>A0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n+1</td>
<td>RA</td>
<td>A1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>n+2</td>
<td>FL</td>
<td>A2</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td>n+3</td>
<td>EM</td>
<td>A3</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>B5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A7</td>
<td>B7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- X0
- X1
- X2
- X3
- X4
- X5
- X6
- X7

P = PROGRAM ADDRESS
RA = REFERENCE ADDRESS
FL = FIELD LENGTH
EM = EXIT MODE
PERIPHERAL EQUIPMENT

6602 CONSOLE

- 2-10" DISPLAYS
- 16-32-64 CHARACTERS/LINE
- CHARACTER OR DOT MODE
- A/N KEYBOARD ENTRY

405-B CARD READER

- 1200 STD CARDS/MIN.
- BUFFER
- CODE TRANSLATION

415-B CARD PUNCH

- 250 CPM
- ROW PUNCHING

607-B MAGNETIC TAPES

- 150"/SEC.
- 200/556/800 BPI
- 120 KC TRANSFER RATE
- BINARY OR BCD MODES
- HALF-INCH WIDTH

6603 DISC

- 80 M CHARACTERS CAPACITY
- 1100/1400 KC
- 12-BIT TRANSFER
- 33 MS AVG. ACCESS WITHIN TRACK
- 240 MS MAX. HEAD POSITIONING

501-B PRINTER

- 1000 LPM
- 136 CHARACTERS/LINE
- 64 CHARACTER SET
- BUFFERED

626-B MAGNETIC TAPES

- 150"/SEC.
- 800 BPI
- 240 KC TRANSFER RATE
- BINARY MODE
- ONE-INCH WIDTH
128 TRACKS PER SECTOR

4 ZONES (1,2,3 AND 4)

TRANSFER RATE
1100-1400 KC

128 SECTORS EACH
ZONES 3 AND 4

351 BITS PER TRACK

4 HEADS
PER SURFACE

RECORDING—
12 BIT
PARALLEL

100 SECTORS EACH
ZONES 1 AND 2

HYDRAULIC
ACTUATOR

12 DISC - 24 SURFACES
80 M CHAR. CAPACITY
33 MS. AVG. ACCESS (TRACK)
240 MS. MAX (POSITIONING)
SYSTEMS COMMUNICATIONS

CONTROL DATA
6600

PROGRAMMING CONSOLES

OPTICAL DATA READERS

I/O STATIONS

ANALOG

6600 COMPUTING FACILITY

MICROWAVE COMMUNICATIONS TERMINAL

LONG LINE COMMUNICATIONS TERMINAL

DATA COLLECTION EQ.
SOFTWARE

CONTROL DATA
6600

6600 COMPUTER SYSTEM PROVIDES:

- UNPRECEDENTED COMPUTATIONAL POWER
- MULTI-PROCESSING CAPABILITIES

6600 SOFTWARE:

- INTEGRATES HARDWARE FEATURES
- RESULTS IN AN UNMATCHED LEVEL OF THROUGHPUT
SIPROS FEATURES:

- DISC - ORIENTED I/O SYSTEM
- PARAMETRIC DESIGN
- MULTI-LEVEL PRIORITY SYSTEM
- INTERNAL JOB SCHEDULING
- JOB ACCOUNTING
- PROGRAM PROTECTION SAFEGUARDS
- DYNAMIC MEMORY ALLOCATION
- PPU TASK ASSIGNMENT
- HARDWARE DIAGNOSTIC ROUTINES
- OPERATOR INTERVENTION ABILITY
- VISUAL DISPLAY OF SYSTEMS ACTIVITY
FORTRAN 66

FORTRAN IV EXTENDED
PRECISION 15/29 DIGITS
MAGNITUDE - $10^{\pm308}/2^{59-1}$
DISC READ-WRITE
COMPILE MODE OPTION
REGISTER REFERENCE OPTION

INTERMIX FORTRAN 8 ASCENT CODE
SEGMENTION FEATURE
FORTRAN CONSTANT NOTATION
FORTRAN TYPE DECLARATIONS
FORTRAN LIBRARY Routines

HARDWARE-ORIENTED SYMBOLIC ASSEMBLER
SYSTEM MACROS FOR I/O OPERATIONS
PROGRAMMER-DEFINED MACROS
EXTENSIVE PSEUDO-OPS
MULTI-STATEMENTS PER LINE

ASCENT
SOURCE LANGUAGE

ASPERS

- MACHINE-ORIENTED MNEMONICS
- PSEUDO-OPS
- SYSTEM INPUT-OUTPUT MACROS
- SEGMENTATION FEATURE
- CENTRAL MEMORY BLOCKS RESERVATION
- SYSTEM CHANNEL SCHEDULING MACROS
- ACCESS TO ASCENT SYMBOLS

CONTROL DATA

6600
SYSTEM COMPONENTS

CONTROL DATA 6600

POOL PROCESSORS

EXECUTIVE AND MONITOR PROGRAM

CENTRAL MEMORY

DISC EXECUTIVE PROGRAM

SYSTEM DISC
DISC ORGANIZATION

SYSTEM DISC FUNCTIONS
- PROGRAMMER SCRATCH AREA
- JOB STACK
- OUTPUT BUFFERS
- SYSTEM Routines

VARIABLE LENGTH LOGICAL RECORDS

<table>
<thead>
<tr>
<th>PROGRAMMER SCRATCH AREA</th>
<th>JOB STACK</th>
<th>OUTPUT BUFFERS</th>
<th>SYSTEM Routines</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>J1</td>
<td>01</td>
<td>S1</td>
</tr>
<tr>
<td>P2</td>
<td>J2</td>
<td>02</td>
<td>S2</td>
</tr>
<tr>
<td>P3</td>
<td>J3</td>
<td>03</td>
<td>S3</td>
</tr>
<tr>
<td>P4</td>
<td>J4</td>
<td>04</td>
<td>S4</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>07</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM DISC

P1 S4
P7 S5
P6 S6
P3 S3
P5 S2
P4 S1
P2 S0
DECK ORGANIZATION

* END OF JOB CARD

DATA

PROGRAM

OPTIONAL

MEMORY MAP
DUMP ADDRESS
SNAP DUMP
CONSOLE REQUIREMENTS
ERROR HALT CONDITIONS

OPTIONAL

TAPES
PERIPHERAL PROCESSOR
PROGRAMS
DISC ESTIMATE
MEMORY ESTIMATE
EQUIPMENT CHANGES

REQUIRED

*JOB NAME
*ACCOUNT NUMBER
PRIORITY
TIME LIMIT

OPTIONAL

* INDICATES REQUIRED INFORMATION
CPU Programming Guidelines

Control Data 6600

- An instruction may be issued if:
 1. The previous instruction has been issued, and
 2. The functional unit required is free, and
 3. The result register required is free

- An instruction may begin execution if:
 1. It has been issued, and
 2. All other registers required are free

- Representative execution times

 Address incr. 3*
 FLT. ADD 4
 FLT. Multiply 10
 Branch 8
 FLT. Divide 29
 Read from mem. 8
 Write into mem. 10

* All times in minor cycles