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Summary: Most computers in operation today have supplementary programs which do 
automatic coding or program assembling. These programs either translate, automatically 
code, or interpret pseudo instructions which in themselves may cause the enaction of 
hundreds of actual machine instructions. The outstanding feature of such routines is that 
programming time and effort is cut to a minimum. 

This paper deals generally with translation and interpretive schemes, and specifically 
with a suitable translation routine for use with the DEUCE computer. The translation 
program is called SODA, or Symbolic Optirrlum Deuce Assembly Program. Two examples 
of SODA use are included in an appendix. 

INTRODUCTION TO THE PROBLEM 

DEUCE is a two-plus-one-address computer having 
twelve 32-word mercury delay lines of rapid-access 
storage, and an 8,192-word magnetic drum backing 
store (see Haley, 1956). It has proved to be a powerful 
tool for both scientific and commercial applications, and 
its usefulness is greatly increased by a large library of 
subroutines and programs. The cost of the machine 
places it in the medium-scale computer class, but the 
speed of operation is comparable to machines in the 
large-scale class. Certain aspects of programming 
DEUCE, however, are clerical in nature, and can be 
somewhat tedious; such programming work might well 
be left Id the machine itself. 

The object of the work leading to this paper has been 
the development of a programming scheme which makes 
the writing down of a program much simpler and more 
jtraightforward than normal DEUCE programming. 
This is because the SODA language is closer to that of 
a mathematical language, and includes strong mnemonic 
aids. Any sort of intermediate routine which eases the 
programmer's work is especially of value in an academic 
environment. Universities tend to have a great number 
of problems which necessitate the use of a computer, but 
do not have the necessary programming staff to write 
the programs. A system such as SODA enables people 
who are familiar with a problem, and who are not 
familiar with computers, to write their own programs 
with relatively little external assistance. 

The basic difficulties in preparing a program for any 
machine can be minimized by the use of either inter- 
pretive or translation routines. Almost all computers 
in use today have routines of this nature available simply 
for the ease, efficiency, and convenience of the user. 
Even though these "intermediate" routines generally 
require more machine time, the aid they give the pro- 
grammer (particularly a novice) makes them highly 
desirable from an economic point of view. 

INTERPRETIVE AND TRANSLATION ROUTINES 

Any intermediate automatic coding program for a 
computer may be broken down into either a translation 
or an interpretive routine. There are routines which 
combine the advantages of both translation and inter- 
pretive routines to give optimum results in terms of 

machine efficiency and programming effort. For 
example, some routines, in order to minimize pro- 
gramming time, require that a pseudo program be run 
through a translator, an interpreter, and then an opti- 
mizing program (in the case of computers with only a 
drum or delay-line store), before giving a coded program 
in machine language, suitable for the actual solution of 
the problem. 

An interpretive routine is a program which, when given 
an order (which is called a pseudo order) in a simplified 
language, calls in (i.e. transfers control to) an appropriate 
subsequence, stored elsewhere in the machine, to carry 
out that step in the calculation. After completion of the 
subsequence, control returns to the interpretation of the 
next pseudo instruction. An interpretive routine most 
useful for the DEUCE machine is called the General 
Interpretive Program (GIP). GIP, designed for handling 
almost any matrix manipulation, also enables the pro- 
grammer to operate on large blocks of data in a prescribed 
sequence. Another similar but less elaborate interpretive 
routine for the DEUCE is the Tabular Interpretive 
Program (TIP). Still another interpretive program is 
called Alphacode; this is an alpha-numeric system 
which transforms the computer into a three-address 
machine which has indexing facilities and works entirely 
in floating-point arithmetic. These three routines were 
described by Robinson (1 959). 

When using a translation routine, the program is first 
written down in terms of the pseudo orders of the 
translator's vocabulary, which is similar to that of an 
interpretive routine. These pseudo orders, however, 
are then fed into the translator, which produces an out- 
put program in terms of standard machine orders. It  is 
this program, in the standard computer language, which 
effects the problem solution. The interpretation of the 
pseudo orders thus occurs only once. Since interpreta- 
tion usually consumes considerable machine time, a 
translation scheme is of most advantage with often-used 
programs. It  is believed that SODA is the first transla- 
tion scheme prepared for DEUCE. 

INTRODUCTION TO THE NEW PSEUDO LANGUAGE-SODA 

The purpose of SODA is to make the writing down of 
instr~~ctions for DEUCE easier. In doing this, certain 
physical features of DEUCE, which may makc pro- 
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gamming somewhat tedious in the DEUCE language, 
have to be overcome. These problems are, in general, 
those that face the writer of a translation routine for a 
computer which has a limited amount of non-random- 
access storage, and another larger level of backing 
storage. 

Eight of DEUCE'S twelve mercury delay-lines are 
connected to the control unit of the machine so that only 
these eight can contain the program. For programs 
larger than 8 x 32 instructions, more program must be 
brought into delay lines from the magnetic drum at the 
proper time. The drum contains 256 32-word tracks 
numbered 0 to 255. SODA makes i t  possible for the 
programmer to assume that almost the entire drum 
is a random-access store that handles both data and 
program. Since either data or program is automatically 
brought into delay lines only when needed, this means 
that SODA defines a machine with only one level of 
storage. 

When programming in the DEUCE language, the 
programmer usually aims at coding the program within 
the delay lines in an optimum manner such that the next 
instruction word is available at the same time that the 
previous order is completed. Very poor coding can 
result in an increase in the running time of up to several 
times that of an optimally coded program. SODA writes 
orders in terms of DEUCE instructions, and optimiza- 
tion is automatically done in every group of delay lines 
of instructions. Up to 192 DEUCE instructions, 
optimally coded within every set of two delay lines, may 
be in any group, but the programmer is not faced with 
the size of groups, or when and where each begins, as 
the transfer from one group to the next is carried out 
automatically. All necessary subroutines are also placed 
in the mercury store when a new group, or block, of 
instructions is brought from the drum. The new informa- 
tion is transferred one delay line immediately following 
another, a process requiring at least 13 milliseconds per 
delay line. It is possible that a repetitive loop in the 
SODA program could result in the transfer of two or 
more blocks of DEUCE instructions to the fast store 
each cycle, thereby greatly reducing the efficiency of the 
translated program. The more experienced SODA 
programmer can compensate for this to a certain extent 
by placing what is known as a "LOOP" control card 
before repetitive portions of the SODA program. 
Associated with each SODA operation are a specified 
number of DEUCE instructions. The programmer can 
sum the numbers associated with the SODA instructions 
in the loop and include the sum as a parameter of the 
control card. If possible, the translation process will 
then place the loop within a single group of DEUCE 
instructions. Thus, in Example I of Appendix 2, 
instructions 11-14 comprise a repetitive loop which one 
would desire to have as fast as possible. Therefore, a 
"LOOP" control card might well be inserted between 
instructions 10 and 1 I .  

Each DEUCE instruction must include six numbers 
which specify various addresses and clock times of the 

computer. This detail, which is attributable to the 
logical layout of the DEUCE hardware and insures 
optimum coding, discourages people who do not have 
time to learn the process. SODA alleviates the probleu 
by defining a more conventional computer with less 
hardware; the book-keeping details of programming are 
therefore lessened. 

Another factor to which a novice must become 
acclimatized is that the DEUCE machine operates in 
binary arithmetic. There are a host of subroutines 
available for decimal input and output, but the details 
of using them are a bit involved for the inexperienced 
user. Although SODA operates internally either in 
binary or standard floating-binary form, there are pseudo 
instructions available which permit either binary, 
decimal, or floating-decimal input and output. 

SODA is a one-plus-one-address "machine," recog- 
nizing either numeric or mnemonic orders which bear 
no resemblance to the DEUCE instruction format, and 
whose addresses may be written with symbolic names. 
It is therefore the purpose of SODA to translate to 
DEUCE language from a language more easily under- 
stood by the occasional user who has not had previous 
computer experience, that is, from a simple language 
which is quite close to that found in writing a step-by- 
step word statement of a mathematical calculation. 
Existing DEUCE subroutines may be used with SODA 
by employing a "SUBROUTINE" control card. This 
card associates with the subroutine a mnemonic reference 
in standard SODA terminology. Once the control card 
has been supplied to the translator, this mnemonic 
reference can be given at any point in the SODA prc 
gram, just as if it were a regular SODA instruction, 
whenever it is desired to employ the subroutine. 

THE SODA MACHINE A N D  T H E  SODA L A N G U A G E  

The selection of a pseudo language rests on many 
requirements, the most important of which are the ease 
with which the language can be used, and the efficiency 
of the final machine program. Other points of considera- 
tion include the ease with which the translation program 
itself can be written, and the more pressing require- 
ments of the computation laboratory sponsoring the 
development. 

The first point argues for a language close to that 
which the human user employs as his own language. 
Thus we might desire to write algebraic equations, or 
merely give sentence statements of what is desired. 
The former of these is presently receiving some attention 
by Dr. C. Hamblin of the Humanities Department of 
the University of New South Wales, Sydney, Australia. 
He has already written an interpretive program using 
such a language. A translation program for this type 
of language is extremely involved, and it was felt that 
something which would be available quickly would be 
more desirable. In addition, it was felt that at a univer- 
sity it would be advantageous to have a language which 
was more like that of a conventional single-address 
machine. Once such a language is mastered, the step 
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FIG. 1.-Layout of the SODA machine. 
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data area, which has been defined at the beginning of the 
SODA program. 

There is a direct connection between the part of the 
memory devoted to constants and temporary storage, 
and the bus. Data in the second part of the drum 
memory are arranged in what are termed arrays, each 
with a symbolic name, and the programmer can get at 
them only by placing them in one of the two working 
stores, which can be considered as random-access 
memories of indefinite size. When working with data in 
the working stores, it is possible to step through the 
data by employing index registers. A particular element 
in an array can be selected by counting back from the 
last element a number of elements equal to the number in 
a specified index register. Thus, the last element is 
chosen if the index register contains a nought, the next 
to last if it contains a one, and so forth. There is a path 
between the index registers and the bus, so they can be 
loaded or their contents stored away, and a special 
adderlcomparison unit is included, so they can be both 
modified and examined. Any element of an array can 
be given a spot numeric reference without the use of 
index registers. If the programmer has finished with an 
array in one of the working stores, and he has placed 
information in it which must be retained, then he must 
return the array to the drum. A special SODA instruc- 
tion is provided for this purpose. 

The arithmetic unit is composed of three uccurnuluiors 

is a relatively minor one. The choice for a language, 
therefore, embodies the principles employed in pro- 
gramming a more conventional type computer, with the 
additional facility that the instruction names and the 
various addresses can be alphabetical in nature, thereby 
allowing for mnemonic aids. Indeed, SODA incor- 
porates many of the features employed in SOAP (Sym- 
bolic Optimum Assembly Program) for the IBM 650 
computer and SAP (Share Assembly Program) for the 
IBM 704 machine. The basic language of these same 
two schemes was used as a guide throughout the 
development. 

SODA transforms DEUCE so that it resembles, to 
the programmer, the computer illustrated in Fig. 1. 
Those familiar with DEUCE logic will notice many 
differences between the two machines. It is one of the 
difficult aspects of writing a translation program to 
think of two entirely separate machines, one being the 
actual computer and one the pseudo computer defined 
by the language. 

The difference from the DEUCE machine is imme- 
diately apparent. Here the memory is composed 
exclusively of a 256-track drum divided between program, 
constants, and temporary storage in the first part, and 
data in the second. The dividing line between data, 
program, and constants is not fixed, and the only require- 
ment is that the program does not overlap any of the 
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(d lor t ,  upper and lon~~r), each of which has all the 
facilities of a normal accumulator except that multi- 
plication and division arc limited to the upper. Further- 
more, the upper and lower have the facility of combining 
into a double-length accumulator which is capable of 
performing addition, subtraction, and a limited number 
of other double-length operations. The lower and upper 
also form a floating accumulator which permits floating- 
point operations. 

In  this pseudo computer, control extracts the instruc- 
tions from the program memory, in the correct sequence, 
and interprets them so that the stated requirements are 
transacted. 

Finally, the input and output correspond to either 
binary, decimal, or floating-decimal read and punch. 
When blocks of binary information are employed, there 
is a sum check on data coming in to the machine, and a 
check sum is computed for output punching. No other 
data checks are included in the first version of SODA. 
The input and output arrangements of binary arrays 
will not, in general, match the existing card conventions 
on DEUCE. However, if the array can be considered 
as a single-row matrix, then the data will be in con- 
ventional DEUCE form except for the data card pre- 
ceding the matrix, and this could be incorporated by the 
SODA program if desired. Indeed, the programmer 
can always employ SODA to produce conventional 
form at  the expense of added SODA instructions. 

It is difficult to discuss the SODA machine and the 
SODA language separately since, as is true in any real 
computer, there is a correspondence of the first order 
between the two. The machine described above lends 
itself most easily to a single-address type of code. It is 
felt by many that a. three-address code is actually quite 
a bit easier to use and for the novice programmer to 
understand. The three-address code is certainly more 
efficient for certain types of problems. Nevertheless, as 
was mentioned above, it was desired that the resultant 
program be usable as an  introduction to computer pro- 
gramming, and the single-address system allies itself 
more closely with the vast majority of computers presently 
in existence. 

The SODA code is a mod~fied single-address one In 
that provision for specifying the location of the next 
instruction is included. This was done because it seemed 
to ease some of the problems of writing the translation 
program, without affecting the basic single-address 
principles. 

One pseudo instruction is punched per input card, 
and occupies the first 25 columns of the normal 32- 
column DEUCE field. The cards are punched in 
standard alphanumeric form. 

Five control (or directive) cards assist in the organiza- 
tion of the translated program. Three of these are used 
at  the beginning of the SODA program. These d~rec t  
the initializing before the actual program is translated. 
The first type defines the names of all constants or 
temporary storage spaces used in the SODA program. 
A name may be up to five characters in length, at  least 

one of which must have a hole punched i n  the Y or X 
row. The second type defines any subroutines used in 
the program, and is the "SUBROUTINE" control men- 
tioned above. The third type reserves space for any 
data that are to be stored as an  array or  block, and is 
used by stating the number of the last track holding 
elements in the array, the number of elements in the 
array, and the name by which the array will be specified. 
Still another type of control instruction defines the 
starting point of the pseudo program, and it follows the 
last card of the program being translated. The fifth 
control card is the "LOOP" control described above. 

The basic SODA instruction is composed of four 
parts: the location of this instruction, the operation, 
the location of the operand, and the location of the next 
instruction. The location of this instruction is com- 
posed of five punched columns representing the address 
by which the instruction is to be known. These columns 
may be left blank, in which case it is assumed that this 
instruction is to be obeyed immediately after the pre- 
ceding one. The only reason for having a symbolic 
name in these columns is to provide an  initial point for 
the first instruction, or  to provide a name to which a 
jump reference can be made. 

The operation is three characters in length, and is 
essentially a mnemonic abbreviation to remind the 
programmer of the operation. A list of the instructions 
is given in Appendix 1. A version of SODA exists 
which provides a list of numeric instructions. This is 
useful when alpha-numeric auxiliary equipment is not 
available. 

The location of the operand is five characters in length 
These columns may be symbolic, numeric, or blank. 
The operand is the actual number corresponding to the 
operand address. The synlbolic address either refers to 
a constant (defined by the initializing control card giving 
the names of the constants) or  to an array of data which 
has been placed in one of the working stores. If the 
operand address is numeric, 0-31 refers to one of 32 
physical positions in working store one, 32-63 refers to 
working store two, 64-95 refers to constants store, 
100 is the short accumulator, 101 is the lower accumu- 
lator, 102 is the upper accumulator, and 103-107 refer 
to special binary numbers. In addition to these con- 
ditions, a symbolic address, when used with one of the 
conditional jump instructions, may specify the location 
to which the jump is addressed. 

The location of the next instruction is composed of five 
characters. This address is us~lally left blank, which 
assumes that the next instruction to be obeyed follows 
on the succeeding card. When conditional branching 
instructions are used, the operand location and the 
location of the next instruction describe the two alterna- 
tive paths which the jump selects, the former being taken 
if the jump condition is fulfilled. 

In addition to these basic specifications, various other 
quantities may be included in the SODA instruction. 
For many of the orders one column may give the 
number of the index register used in the instruction. 
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Index registers, it will be recalled, are used with arrays 
of data, and the element of the array is selected according 
to the contents of the index register. Five columns are 
used with three special conditional jump instructions, 
and are labelled the decrement. The decrement is used 
as a comparison for jumps involving the index registers, 
or as an operand in modifying the contents of an index 
register. The instructions using a decrement are marked 
with an asterisk in Appendix 1, Section G. As illustra- 
tion, in Example 1, instruction I I is labelled "LOOP." 
It places in the upper accumulator one element of 
array A (defined by card 1, an array definition control 
card). The particular element selected depends upon 
the number in index register 1. Instruction 14 causes 
the decrement (here 1) to be subtracted from index 
register I .  If the result is positive, control returns to 
instruction 11. If the result is negative, instruction 15 
is obeyed next. 

SODA instructions are written down directly from a 
detailed flow diagram. They are then punched (one per 
card) and the cards fed into the machine under the 
control of the translation routine. The SODA instruc- 
tions are translated at approximately seventeen per 
minute. The output of the translator is a pack of cards 
punched with a program written in terms of DEUCE 
instructions. This pack is placed behind a standard 
pack of cards, and the program is then ready to run. 

CHECKING THE TRANSLATED PROGRAM 

During the translation, a trace (or program-testing) 
facility may be built into the machine program by setting 
a non-zero number on the input keys. Inclusion of the 
trace does not mean that the facility must be used during 
the running of the final machine program. During the 
running of the machine program, the trace may be 
operated in any of three modes. If a negative number is 
placed on the input keys, each SODA instruction obeyed 
will punch out the contents of the accumulators and 
index registers, together with an identification number 
of the instruction just enacted. If a non-zero positive 
number is set on the keys the program will stop after 
each instruction, with an identification of the number of 
the operation on the output lights. The various stores 
may then be examined on an associated cathode-ray 
tube. Zero on the input keys causes the trace facility to 
be by-passed, and the program runs without stopping 

(except for programmed stops). When the final program 
has been completely checked, it may be run either by 
this by-passing of the trace feature, or by re-translation 
without inclusion of the trace. The latter will result in 
a faster program. 

RESULTS 

SODA has successfully translated many programs. 
Reports from the programmers indicate a substantial 
time saving over normal DEUCE programming, and 
they feel that this will increase as familiarity with SODA 
grows. The scheme still includes many programming 
details that would not occur in the ideal system. Most 
of these result from compromises due to the difficulty of 
eliminating them in t he  available time. Nevertheless, 
SODA users do indicate an appreciable reduction in the 
overall programming burden. 

SODA produces a less efficient program than could 
be written by hand, the decreased efficiency arising from 
two main sources. First, a DEUCE program written 
bv SODA contains manv more instructions than the 
equivalent hand-written program. Secondly, calcula- 
tions do not occur simultaneously with the transfer of 
information between the drum and the mercurv store. 
Simultaneous computation is possible in normal 
DEUCE programming. Both effects are a result of 
inability to simulate easily the subtleties inherent in 
human programming. Nevertheless, the authors feel 
that the savings in human labour will more than com- 
pensate for the slightly decreased efficiency of the final 
DEUCE program. 

ACKNOWLEDGEMENTS 

The authors are deeply indebted to Professor R. E. 
Vowels and the Electrical Engineering Department of 
the University of New South Wales for making this 
research possible. Specifically we would like to thank 
Mr. R. G. Smart, Senior Lecturer in charge of the 
UTECOM Computing Laboratory, for assisting with 
various details of the SODA program, and for making 
machine time available at UTECOM. We especially 
wish to express gratitude to Mr. George Karoly who 
helped write various portions of SODA, "ironed out" 
sundry troublesome details, and provided general 
encouragement throughout the development. Lastly, we 
would like to thank the Staff at the University and 
UTECOM for the assistance in preparing programs for 
the machine. 

Mr. R. C. Hrigham is now (July 1959) with the Martin Company, Orlando, Florida, and Mr. C. G. Bell is at Speech Com- 
munications Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A. 



Translation Routine for DEUCE 

APPENDIX 1 

LIST OF SODA INSTRUCTIONS 

Instrul 

CAS 
CSS 
ADS 
SBS 
STS 
SSL 
SSR 
L AS 
LOS 
LNS 

rtions Pertaining to the Short Accun~ulator 

- Clear and Add to the Short 
- Clear and Subtract from the Short 
- ADd to Short 
- SuBtract from the Short 
- STore the Short 
- Shift the Short to the Left 
- Shift the Short to the Right 
- Logical And with the Short 
- Logical Or with the Short 
- Logical Non-equivalence with the Short 

Instructions Pertaining to the Lower Accumulator 

CAL - 
CSL - 
ADL - 
SBL - 
STL - 
SLL - 
SLR - 
LAL - 
LOL - 
LNL - 

Clear and Add to the Lower 
Clear and Subtract from the Lower 
ADd to the Lower 
SuBtract from the Lower 
STore the Lower 
Shift the Lower to the Left 
Shift the Lower to the Right 
Logical And with the Lower 
Logical Or with the Lower 
Logical Non-equivalence with the Lower 

Instructions Pertaining to the Upper Accumulator 

CAU - Clear and Add to the Upper 
CSU - Clear and Subtract from the Upper 
ADU - ADd to the Upper 
SBU - SuBtract from the Upper 
STU - STore the Upper 
SUL - Shift the Upper to the Left 
SUR - Shift the Upper to the Right 
LAU - Logical And with the Upper 
LOU - Logical Or with the Upper 
LNU - Logical Non-equivalence with the Upper 
MPY - Multiply 
DIV - DIVide 

Instructions Pertaining to the Double Accumulator 

CAD - Clear and Add to the Double 
CSD - Clear and Subtract from the Double 
ADD - ADd to the Double 
SBD - SuBtract from the Double 
STD - STore the Double 
SDL - Shift the Double to the Left 
SDR - Shift the Double to the Right 
ASD - Add a Single-length word to the Double 
SSD - Subtract a Single-length word from the 

Double 

Instructions Pertaining to Floating-point Arithmetic 

CAF - Clear and Add a Floating-point number 

CSF - Clear and Subtract a Floating-point num- 
ber 

FAD - Floating-point ADd 
FSB - Floating-point SuBtract 
STF - STore a Floating-point number 
PRF - PRepare a Floating-point number 
FMP - Floating-point Multiply 
FDV - Floating-point Divide 
FSR - Floating-point Square Root 
FLG - Floating-point LoGarithm 
FEX - Floating-point Exponential 
FSN - Floating-point SiNe 
FCS - Floating-point Cosine 
FAT - Floating-point Arc-Tangent 

Instructions Pertaining to the Index Registers 

LXP - Load an index register Positive 
LXN - Load an index register Negative 
LXL - Load an index register positive Less one 

unit 
ADX - ADd to an index register 
SBX - SuBtract from an index register 
STX - STore an index register 

Decision or Conditional Jump Instructions 

JSZ  
JSP 
JLZ  
J L P  
JUZ 
J U P  
JDZ 
JDP  
JIX 
JXH 
JXE 

- Jump if the Short is Zero 
- Jump if the Short is Positive 
- Jump if the Lower is Zero 
- Jump if the Lower is Positive 
- Jump if the Upper is Zero 
- Jump if the Upper is Positive 
- Jump if the Double is Zero 
- Jump if the Double is Positive 
- Jump on Index * 
- Jump on index High or equal * 
- Jump on index Equal * 
* This instruction employs a decrement. 

Instructions Involving the Working Stores 

RWO - Read into Working storage One 
RWT - Read into Working storage Two 
WWO - Write from Working storage One 
WWT - Write from Working storage Two 
CWO - Clear Working storage One 
CWT - Clear Working storage Two 

Instructions Pertaining to Input and Output 

RDO - ReaD into working store One from the 
reader 

RDT - ReaD into working store Two from the 
reader 

RDC - ReaD a Card 
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RDA - ReaD Array 
RFD - Read Floating Decimal 
RDD - Read Decimal Data 
PHO - PuncH from working store One 
P H T  - PuncH from working store Two 
P H C  - PuncH a Card 
PHA - PuncH Array 
P F D  - Punch Floating Decimal 
P H D  - PuncH Decimal 
RIL - Read from the Input Lights 
WOL - Write into the Output Lights 
C O L  - Clear the Output Lights 

J. Miscrllaneous Instructions 
S T Z  - STore a Zero 
S T 0  - STore a One 
STA - STore a n  Address unit 
S T H  - STore a High position bit 
STM - STore a Minus one 
ACA - Activate Alarm 
SPA - S t o p  Alarm 
ENS - ENter SODA Subroutine 
LVS - Leave SODA Subroutine 
H P R  - Halt and PRoceed 
STP - STOP 

APPENDIX 2 

EXAMPLES OF SODA PROGRAMMING 

Exunrple I -Vector Dot Product: 

Let the vectors A and R be any dimension n, less than 1025. The parameter n will be read in initially, followed by 
the vectors. Refer to Appendix 1 for a list of the instructions. 

Coding: 

There are two initial control cards: 

Curd nrrmbcr Pnnching 

1 3, A -  , 255, 1024 

The regular SODA program is: 

Locutior~ o/' Opero- 
this instrucfion rion 

BEGIN RDC 

LXP 

RDA 

RDA 

RWO 
RWT 
STZ 

SBX 

LOOP - CA U 

M PY 
ADS 

JIX 

STS 
PHC 

Commcnls 

Array A is defined. Its last track on the drum is 255; it has a 
maximum of 1024 elements (32 tracks). 
Array B is similarly defined. Its last track is track 223; it too has 
a maximum of 1024 elements. 

Location ol 
next instr~rction 

LOOP- 

BEGIN 

82 

Index 
Register D e ~ r r r i ~ o r t  Comment, 

n in index register units is read into 
location 00000. 

1 Index register (IR) I is made equal 
to n. 
Vector A is read to the drum. The 
number of elements read is equal to 
the number in IR 1. 
Vector B is read to the drum, again 
according to the number in IR 1. 
A is placed in working store one. 
B is placed in working store two. 
Short accumulator (which has oper- 
and address code number 100) is set 
to zero. 

1 I is subtracted from IR I .  Operand 
address of 104 indicates a 1 in IR 
units. 

I A is placed in upper. IR I selects a 
particular element of array A. 

1 A, x B, formed. 
The product (in upper, designated as 
102) added to partial sum in short. 

I 00001 1 is subtracted from IR 1. Jump is 
made to instruction 15 if result is 
negative. Otherwise control is re- 
turned to instruction 1 1. 
Answer stored in location 64. 
The answer is punched; control 
returns to beginning. 



Translation Routine ,for DEUCE 

Final Control Card: 

Cord nunihcr Pff~ichLg 

17 I ,  BEGIN 

Comment I 
This is known as a type I control. I t  specifies the address of 
the first instruction to be obeyed. Here the first one is 
"BEGIN," associated with instruction 3. 

Note: A minus sign in an address indicates a blank column. I 
Example 2-Transpose an  m by n Matrix: 

Given a Matrix A of m rows and n columns, produce 
its n by m transpose B. The elements of the matrices 
are punched and stored row-by-row, starting with the 
first row and with no gaps between rows. SODA would 
not normally be used for matrix manipulation, but this 
example is included to illustrate certain programming 
techniques. The flow chart is shown in ~ i ~ .  2. 

Coding: 

There are 7 initial control cards: 

Card number Punching 

1 2 

3, 4, 5 Blank 

6 3, AMN- -, 255, 1024 
7 3, BNM- -, 223, 1024 

The regular SODA program is: 

Card Location of' 
nifnlbrr this instruction 

8 START 

Opcm- 
t b n  

RDC 

CAU 
CAS 
STU 

STS 

STS 
MPY 

SUL 

STU 
PHC 
LXP 

RDA 

RWO 

Operand 
address 

00000 

00001 
00000 
00000 

0000 1 

MM--- 
MM--- 

0001 6 

MN--- 
00000 
MN---. 

AMN-- 

AMN- -- 

READ IN PARAMETERS m  AND n F O R  A  

I 
F O R M  m X n F O R  READING A. 
P U N C H  PARAMETERS n A N D m  F O R  B 

J 
READ IN MATRIX A .  

0 -3 k 
0 - i  

(LESS THAN 
OR EQUAL) 

I i + m  COMPARED WITH m  X n a 

FIG. 2.-Flow diagram for Example 2. 

Commcntr 

This is a type 2 control card and indicates that the names of 
constants and temporary storage locations are going to be 
specified on the next cards. 
These are the names of the storage locations used. There 
are 3. The 4 tells SODA that this is the last card defining names. 
If any of the above definitions refer to constants, the binary 
equivalents of the constants are placed on these cards. 
The original array AMN is defined. 
The output array BNM is defined. 

Locution o/ Index Decrc- 
Next itf.strrfction Rcgister mmf  Comments 

Parameter card for matrix AMN. 
m goes to location 00000, n to 00001. 
rn and n are in IR units. 
n is placed in the upper. 
rn is placed in the short. 
The two parameters m and n are 
interchanged. The parameter card 
for BNM (matrix B) will be punched 
before the matrix. 
m stored for future use. 
rn x n formed. (Because n is in the 
upper.) 
The upper is shifted left 16 places. 
This is necessary because of the 
details of multiplication. 
rn x n is stored. 
Parameter card for BNM punched. 
IR 1 loaded with rn x n for reading 
AMN to the drum. When reading to 
or punching from drum, IR 1 states 
the number of elements in the array. 
Matrix AMN (matrix A) read to 
drum. 
AMN placed in working storc I .  



Translation Routine for DEUCE 
Curd 

 umber 

2 1 

22 

23 

24 

25 

26 

27 

28 

29 

30 
3 1 

32 

33 

Locution o/ 
this instru~tiorr 

TRANS 

LOOP- 

END--- 

Final Control  Card: 

Operu- 
lion 

RWT 

LXP 

JIX 

LXP 

SBX 

STX 

CAS 

STS 

.IIX 

SRX 
WWT 

FHA 

STP 

Cirrd nronhcr 

34 

REFERENCES 

BNM-- 

M N - -  - 

MN-.  -- 

00 104 

M N - - -  

AMN-- 

BNM - - 

00 lo4 
BNM 

BNM-- 

TRANS 

END-- 

LOOP- 

TRANS 

LOOP- 

Decre- 
nwnl C o~1n i~~ml  \ 

BNM placed in working store 2. This 
is necessary even though no informa- 
tion is yet in BNM. 
I R  2 set with ni x n for reading 
elements of AMN. 

0000 1 1 is subtracted from 1R 2. Trans- 
pose is completed if result is negative. 
An 1R containing nin - i elements 
will select the ith element of an array 
of nm elements. 
I R  3 set with m x n for storing 
elements of BNM. 
1 (code 104) is subtracted from 1R 3. 
Instructions 24 and 25 could be 
replaced by thesingle operation LXL. 
Results stored as new value in 
location MN. 
The elements of AMN are taken and 
stored as the elements of BNM, 
according to the specified index 
registers. 

MM- - - Index for BNM decreased by the 
number in location MM. It is seen 
that a symbolic decrement may be 
specified. 
Index for A M N  decreased by I .  
BNM returned to the drum from 
working store 2 so that it may be 
punched from the drum. 
Matrix BNM is punched. The cor- 
rect number of elements is still in 
IR 1 .  
Stop. The transpose program is com- 
pleted. 

The program obeys instruction 8 first. 

ADAMS, C. W. (1952). "Small Problems on Large Computers," Proceedings of  Joint ACMIMellon Institute ConJrrence, May 2-3, 
1952, Richard Rimbach Associates, Pittsburgh 12, Pennsylvania. 

BELL, C. G., and BRICHAM, R.  C. (1958). SODA Manual of  Opc,ration, School of Electrical Engineering, University of New 
South Wales, Sydney, N.S.W., Australia. 

HALEY, A. C. D .  (1956). "DEUCE: a High-speed General-purpose Computer," Pvoc. I.E.E., Vol. 103, Part B, Supplement 
No. 2, p. 165. 

HAMBLIN, C. L. (1958). "GEORGE, A Semi-translation Programming Scheme for DEUCE," Pvogvamnring and Oprrution 
Manual, School of Humanities, University of New South Wales, Kensington, N.S.W., Australia. 

ROBINSON, C. (1959). "DEUCE Interpretive Programs," Computer Journal, Vol. 1 ,  p. 172. 

UNWIN YROTIIGBS LIMTBD. WORIUO AND LONDOS 




